где Е − модуль Юнга среды.
Из зависимости смещения от координаты x видно, что относительная деформация ∂S/∂x , а также, и напряжение σ в фиксированный момент времени зависят от х . В соответствии с этим, продольная волна состоит из чередующихся разрежений и сжатий среды.
Теперь для цилиндрического объема запишем уравнение движения. Масса этого объема
где ρ − плотность недеформированной среды.
Ввиду малости dx можно считать ускорение всех точек цилиндра одинаковым и равным
Тогда этот участок объема будет растянут под влиянием сил F1 и F2 , приложенных к основаниям цилиндра в данный момент времени. Силы, действующие на левое и правое основание цилиндра равны, соответственно
После разложения силы F2 в ряд, получим
и результирующая F1 , F2 сил, действующая на элемент объема равна
Используя основное уравнение динамики поступательного движения (2.1.2) и, подставив значения массы, ускорения и силы, получим
Из сравнения этого уравнения с волновым уравнением для плоской волны (6.3.6) $$<∂^2S \over ∂x^2>=<1 \over v^2><∂^2S \over ∂t^2>$$ , получим
где Е − модуль Юнга.
Полученное уравнение определяет фазовую скорость продольных упругих волн.
Если проделать аналогичные преобразования для поперечных упругих волн, то фазовая скорость поперечных упругих волн будет иметь следующий вид
Волновое уравнение в физике — линейное гиперболическое дифференциальное уравнение в частных производных, задающее малые поперечные колебания тонкой мембраны или струны, а также другие колебательные процессы в сплошных средах (акустика, преимущественно линейная: звук в газах, жидкостях и твёрдых телах) и электромагнетизме (электродинамике). Находит применение и в других областях теоретической физики, например при описании гравитационных волн. Является одним из основных уравнений математической физики.
Атом водорода
[править | править код]
Материал из Википедии — свободной энциклопедии
Перейти к навигацииПерейти к поиску
1>
Do'stlaringiz bilan baham: |