Islom karimov nomidagi toshkent davlat texnika universiteti olmalik filiali


Download 0.58 Mb.
bet19/43
Sana22.01.2023
Hajmi0.58 Mb.
#1110709
1   ...   15   16   17   18   19   20   21   22   ...   43
Bog'liq
пособие (15 03. 2022).ru.uz

MEXANIKADA SAQLASH QONUNLARI
Muammoni hal qilishga misollar
1. NO2 molekulasining molekulaning massa markazidan o‘tuvchi va atomlar yadrolari joylashgan tekislikka perpendikulyar bo‘lgan z o‘qiga nisbatan Jz inersiya momentini hisoblang. Bu molekulaning yadrolararo masofasi d 0,118 nm, bog lanish burchagi a=140°.

Qaror. NO2 molekulasini umumiy massaga ega bo'lgan uchta moddiy nuqtadan iborat tizim sifatida ko'rish mumkin
m=2m1+m2, (1)
b u erda m1 - kislorod atomining massasi; m2 - azot atomining massasi. Molekulani koordinata o'qlariga nisbatan shaklda ko'rsatilganidek joylashtiramiz. (koordinatalarning kelib chiqishi molekulaning C massa markaziga mos keladi, biz z o'qini chizma tekisligiga perpendikulyar "bizga" yo'naltiramiz.) Jz ni aniqlash uchun Shtayner teoremasidan foydalanamiz: J=Jc+ma2 .
Bu holda bu teorema Jz'=Jz+ma2 shaklida yoziladi, bu erda Jz' - z' o'qiga nisbatan, z o'qiga parallel bo'lgan va azot atomidan o'tuvchi inersiya momenti (rasmdagi O nuqta). Demak, kerakli inersiya momenti
jz=Jz'-ma2 (2)
Jz' inersiya momenti ikkita moddiy nuqtaning (kislorod atomlari) inersiya momentlarining yig'indisi sifatida topiladi:
jz'=2m1 d2 (3)
z va z' o'qlari orasidagi a masofa tizimning massa markazining xc koordinatasiga teng va shuning uchun formula bilan ifodalanishi mumkin. .
Ushbu holatda
a=xs=(2m1x1+m2x2)/(2m1+m2),
yoki buni hisobga olgan holda
x1=d cos (a/2) va x2=0,
(to'rt)
(2) formulaga Jz', m va mos ravishda (3), (1), (4) iboralar qiymatlarini almashtirib, biz hosil bo'lamiz.

yoki transformatsiyadan keyin
(besh)
Kislorod (AO=16) va azotning (AN=14) nisbiy atom massalari. Biz ushbu elementlarning atomlarining massalarini atom massa birliklarida (a.m.u.) yozamiz va keyin kilogrammda ifodalaymiz (a.m.u 1 = 1,66∙10-27 kg):
m1=16∙1,66∙10-27 kg=2,66∙10-26 kg;
m2=14∙1,66 10-27 kg=2,32∙10–26 kg.
Formula (5) ga m1, m1, d va a qiymatlarini almashtiramiz va hisob-kitoblarni bajaramiz:
Jz=6,80 10-46kg∙m2.
2. Jismoniy mayatnik uzunligi bo'lgan tayoqdirl=1 m va massasi m1=l kg uning biriga biriktirilgan. Qavs ichidagi ifodani hisoblash uchun atomlarning massalari o'rniga ularning nisbiy atom massalarini qo'yishingiz mumkin, chunki bu erda massalar m2 = 0,5 m1 massali diskning uchlari nisbati shaklida kiritilgan. Chizma tekisligiga perpendikulyar sterjendagi O nuqtadan o'tuvchi Oz o'qiga nisbatan bunday mayatnikning Jz inersiya momentini aniqlang (rasmga qarang).

Qaror.Mayatnikning umumiy inersiya momenti sterjen Jz1 va diskning Jz2 inersiya momentlari yig‘indisiga teng.
Jz=Jz1 + Jz2 (1)
J z1 va diskning Jz2 inersiya momentlari ularning massa markazlaridan o'tuvchi o'qlarga nisbatan hisoblangan formulalar Jadvalda keltirilgan. Biz. 41. Jz1 va Jz2 inersiya momentlarini aniqlash uchun Shtayner teoremasidan foydalanishimiz kerak:
J=Jc+ma2. (2)
Biz novda inersiya momentini formula (2) bo'yicha ifodalaymiz:
Jz1=l/12 m1l2+m1a12.
Oz o'qi va unga parallel bo'lgan o'q orasidagi masofa a1 novdaning C1 massa markazidan o'tuvchi, quyidagi rasmda ko'rsatilgan. 3,2 1/2l–l/3l=l/6l ga teng. Buni hisobga olib, biz yozamiz
Jz1=l/12 m1l2+m1 (l/6 l)2=1/9 m1l2=0,111m1l2.
Formula (2) ga muvofiq diskning inersiya momenti teng
Jz2=l/2 m2R2+m2a22.
bu erda R - disk radiusi; R=1/4l. Diskning massa markazidan o'tuvchi Oz o'qi bilan unga parallel bo'lgan o'q orasidagi masofa a2 (rasmga qarang) 2/3l–l/4l=l1/12l. Buni hisobga olib, biz yozamiz
Jz2=l/2 m2 (1/4l)2+m2(l1/12l)2=0,0312 m1l2 + 0,840 m1l2=0,871 m1l2.
Olingan Jz1 va Jz2 ifodalarni (1) formulaga almashtirib, topamiz
Jz=0,111m1l2+0,871 m1l2=0,111m1+0,871 m1l2,
yoki m2=0,5 m1 ekanligini hisobga olsak,
Jz=0,547m1l2.
Hisob-kitoblarni amalga oshirib, fizik mayatnikning Oz o'qiga nisbatan inersiya momentining qiymatini olamiz: Jz=0,547,1,1 kg m2=0,547 kg m2.

Download 0.58 Mb.

Do'stlaringiz bilan baham:
1   ...   15   16   17   18   19   20   21   22   ...   43




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling