Kompyuterning qoʻllanilish
-lemma. (9) – (10) tenglamalar sistemasi yagona yechimga ega. Isbot
Download 239.37 Kb.
|
matematika
1-lemma. (9) – (10) tenglamalar sistemasi yagona yechimga ega.
Isbot. (9) tenglamani quyidagicha yozib olamiz: yi1 yi h f (xi , yi ) , i = 0, 1, …, N–1. (11) Berilgan f funksiyaning aniqlanish sohasi haqidagi farazga koʻra (11) tenglikning oʻng tarafi ixtiyoriy haqiqiy yi lar uchun aniqlangan, shuning uchun bu tenglik oldingi xi tugundagi toʻr yechimdan foydalaib xi+1 tugundagi toʻr yechimni topish imkoniyatini beruvchi formula boʻlib hisoblanadi. (10) tenglikka koʻra x0 tugundagi toʻr yechim maʼlum, (11) dan ketma-ket foydalanish orqali esa barcha nomaʼlum y1, y2, …, yN larni biridan ikkinchisini bir qiymatli topib borish mumkin. izoh. Toʻr yechimlarni topishning yuqorida tavsiflangan ushbu y0 = , yi1 yi h f (xi , yi ) , i = 0, 1, …, N–1. (11) algoritmi 1768 yilda shvetsariyalik matematik olim Leonard Eyler (1707- 1783) tomonidan taklif etilgan boʻlib, bu algoritm uning nomiga Eylerning oshkor usuli deb ataladi. Bu usulning «oshkor» deb atalishiga sabab (9) tenglamaning yi+1 ga nisbatan yechilgan holda berilishidadir. Bu bilan (11) oshkor formula oldingi xi tugundagi yi toʻr yechimdan foydalanib xi+1 tugundagi yi+1 toʻr yechimni topish imkoniyatini berishi tushuniladi. Endi (11) algoritmning geometrik talqinini beraylik. Buning uchun avvalo (1) differensial tenglamaning yechimlar toʻplami mavjudligini faraz qiliamiz, yaʼni berilgan [x0 , x0 + L] kesmaga mos kenglikning ixtiyoriy ichki (x*, y*) nuqtasi orqali bu tenglamaning integral egri chizigʻi oʻtadi, boshqacha qilib aytganda, (x0 , x0 + L) ochiq intervaldan olingan ixtiyoriy x* va ixtiyoriy haqiqiy y* uchun ushbu y(x*) = y* , y(x) = f(x, y(x)) Koshi masalasi yechiladi. Oddiy differensial tenglamalar nazariyasidan bizga maʼlumki, buning uchun kenglikning ixtiyoriy nuqtasida x, y oʻzgaruvchilar juftligi boʻyicha f funksiyaning uzluksizligini faraz qilish yetarli. izoh. Geometrik nuqtai nazardan Eyler oshkor usulining maʼnosi izlanayotgan y yechimning [xi, xi+1] intervaldagi grafigini xuddi shu differ- ensial tenglamaning unga yaqin boʻlgan biror yechimi grafigiga oʻtkazilgan urinma boʻlagini anglatadi. Agar y yechimning xi tugundagi y(xi) yechimi aniq boʻlganda edi, u holda bunday boʻlak sifatida y yechimga xi nuqtada oʻtkazilgan urinma boʻlagini olish mumkin (4-rasm). 4-rasm. 5-rasm Ammo biz y(xi) miqdor oʻrniga uning yi taqribiy qiymatini bilamiz, shuning uchun izlanayotgan y yechimning grafigiga (xi, y(xi)) nuqtadan boshqasi orqali urinma oʻtkazishga majburmiz, bu xuddi shu differensial tenglama y(i) - yordamchi yechimi grafigining (xi, yi) nuqtasidan oʻtuvchi urinma (5-rasm). Bu urinmaning oʻrdinata oʻqiga parallel va xi+1 tugun orqali oʻtuvchi toʻgʻri chiziq bilan kesishish nuqtasining ordinatasi (11) formula bilan hisoblangan yi+1 miqdorga aynan teng ekanligini koʻrsataylik. Aslida esa, faraz qilaylik, x – aytilgan urinmaning ixtiyoriy nuqtasi- ning absissasi, ỹ(x) – shu nuqtaning ordinatasi, i – bu urinmaning x oʻq bilan tashkil qilgan burchagi boʻlsin (5-rasm). U holda ỹ(x) = (tgi)(x– xi) + yi , (13) bu tenglama burchak koeffitsiyenti k = tgi va (xi, yi) nuqtadan oʻtuvchi toʻgʻri chiziq tenglamasi. Maʼlumki, (13) toʻgʻri chiziq y(i) funksiyaning grafigiga x = xi nuqtada urinadi. Hosilaning geometrik talqinidan foydalanib, quyidagini yoza olamiz: tgi = (y(i))(xi), (14) bu yerda y(i) – quyidagi Koshi masalasining yechimi: (y(i))(x) = f(x, y(i)(x)), (15) y(i)(xi) = yi . (16) (14) uchun esa quyidagi tenglikka ega boʻlamiz: tgi = f(xi, y(i)(xi)) = f(xi, yi). Shularga koʻra (13) urinma tenglamasi quyidagicha yoziladi: ỹ(x) = f(xi, yi)(x–xi) + yi . (17) Bu urinmaning xi+1 tugun orqali oʻtuvchi va ordinata oʻqiga parallel toʻgʻri chiziq bilan kesishish nuqtasi ordinatasini topish uchun (17) tenglamada x = xi+1 deb olish lozim. Bu oʻrniga qoʻyish natijasida quyidagi miqdorga ega boʻlamiz: ỹ(xi+1) = f(xi, yi)(xi+1–xi) + yi . Bu miqdor (11) formula orqali xi+1–xi = h munosabatdan foydalanib topilgan yi+1 miqdorga teng. Download 239.37 Kb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling