Kudaybergenov k. K. Funksional analizdan misol va masalalar
Download 1.55 Mb. Pdf ko'rish
|
/S
0 faktor fazosini toping. § 4.1. Chiziqli fazolar va chiziqli funksionallar 121 13. C[−1, 1] fazoda berilgan quyidagi funksionallarning chiziqli ekanligini isbotlang. Bu funksionallarning yadrosi haqida qanday fikr- dasiz? a) f (x) = 1 3 (x(−1) + x(1)); b) f (x) = 2(x(1) − x(0)); c) f (x) = n P k=1 α k x(t k ), bunda α k ∈ R, k = 1, n va t 1 , t 2 , . . . , t n ∈ [−1, 1]; d) f ε (x) = 1 2ε [x(ε) + x(−ε) − 2x(0)], ε ∈ [−1, 1]; e) f (x) = 1 R −1 x(t) dt; f) f (x) = 1 R −1 x(t) dt − x(0); g) f (x) = 0 R −1 x(t) dt − 1 R 0 x(t) dt h) f (x) = 1 R −1 x(t) dt − 1 2n + 1 n P k=−n x( k n ). 14. Quyidagi funksionallarning chiziqli ekanligini isbotlang: a) f (x) = 1 R −1 tx(x) dt, x ∈ C[−1, 1]; b) f (x) = 1 R −1 tx(t) dt, x ∈ C 2 [−1, 1]; c) f (x) = 1 R 0 t − 1 3 x(t) dt, x ∈ C 2 [0, 1]; d) f (x) = x 1 + x 2 x = (x 1 , x 2 , . . .) ∈ ` 2 ; e) f (x) = n P k=1 x k k , x = (x 1 , x 2 , . . .) ∈ ` 2 ; f) f (x) = ∞ P k=1 (1 − 1 k )x k , x = (x 1 , x 2 , . . .) ∈ ` 1 ; g) f (x) = ∞ P k=1 2 −k+1 x k , x = (x 1 , x 2 , . . .) ∈ c 0 ; h) f (x) = lim n→∞ x n x = (x 1 , x 2 , . . .) ∈ c. 15. L chiziqli fazoning H giperqism fazosi berilgan bo‘lsin. x 0 / ∈ H element va λ 6= 0 son uchun quyidagi ikki shartni qanoatlantiruvchi yagona g funksionali mavjud ekanligini ko‘rsating: 1) ker g = H; 2) g(x 0 ) = λ. 16. L chiziqli fazoda h va g chiziqli funksionallar berilgan bo‘lib, ker h = ker g bo‘lsa, u holda g = αh tenglikni qanoatlantiruvchi α ∈ K 122 IV. Normalangan fazolar soni mavjud ekanligini ko‘rsating. 17. L chiziqli fazoda aniqlangan g chiziqli funksional berilgan bo‘lsin. L/ ker g faktor fazoning o‘lchamini toping. 18. L chiziqli fazoda f, f 1 , f 2 , . . . , f n chiziqli funksionallar berilgan bo‘lsin. Agar f 1 (x) = f 2 (x) = . . . = f n (x) = 0 bo‘lishidan f (x) = 0 ekanligi kelib chiqsa, u holda a 1 , a 2 , . . . , a n sonlari topilib, barcha x ∈ L uchun f (x) = n P k=1 a k f k (x) tengligi o‘rinli bo‘lishini isbotlang. 4.2. Normalangan fazolar K maydon ustidagi X chiziqli fazoning har bir x elementiga nomanfiy kxk haqiqiy soni mos qo‘yilgan bo‘lib, bu moslik quyidagi shartlarni qanoatlantirsin: 1. kxk = 0 ⇔ x = 0; 2. kλxk = |λ|kxk, ∀ λ ∈ K, x ∈ X; 3.kx + yk ≤ kxk + kyk, x, y ∈ X. U holda X fazoni normalangan fazo deb ataymiz. kxk soni esa x elementning normasi deb ataladi. Agar ρ(x, y) bilan kx − yk sonini belgilasak, u holda ρ(x, y) metrika boladi. Haqiqatan, 1) ρ(x, y) = kx − yk = 0 ⇔ x = y; 2) ρ(x, y) = kx − yk = k(−1)(y − x)k = | − 1|ky − xk = ky − xk = ρ(y, x); 3) ρ(x, y) = kx − yk = kx − z + z − yk ≤ kx − zk + kz − yk = ρ(x, z) + ρ(z, y). Demak, ixtiyoriy normalangan fazo metrik fazo bo‘ladi. Shuning uchun metrik fazolarda kiritilgan tushunchalarga normalangan fazo- larda ham ta’rif berishga bo‘ladi. Aytaylik, X normalangan fazo va x 0 ∈ X bo‘lsin. Metrik fazolardagi kabi markazi x 0 nuqtada va radiusi r > 0 ga teng ochiq (yopiq) shar deb B(x 0 , r) = {x ∈ X : kx−x 0 k < r} (B[x 0 , r] = {x ∈ X : kx − x 0 k ≤ r}) to‘plamga, markazi x 0 nuqtada va radiusi r > 0 ga teng sfera deb S(x 0 , r) = {x ∈ X : kx − x 0 k = r} to‘plamga aytiladi. x 0 nuqtaning ε > 0 atrofi deb B(x 0 , ε) ochiq sharga aytamiz va uni O ε (x 0 ) kabi belgilaymiz. Atrof tushunchasi kiritilgandan keyin urinish, limit, yakkalangan nuqtalar; ketma-ketlikning yaqinlashuvchiligi, fun- damental ketma-ketlik, to‘plamning yopilmasi, to‘plamning ichi, ochiq § 4.2 Normalangan fazolar 123 to‘plam, yopiq to‘plam tushunchalariga metrik fazolardagi kabi ta’rif beriladi. To‘la normalangan fazo Banax fazosi deb ataladi. Ta’rif. X Banax fazosi va Y ⊂ X bo‘lsin. Agar [Y ] = X bo‘lsa, u holda X fazo Y fazoning to‘ldiruvchisi deb ataladi. L normalangan fazoning L 0 chiziqli qism fazosi yopiq bo‘lsa, u holda L 0 to‘plamni L fazoning qism fazosi deb ataymiz. {x α } sistemani o‘z ichiga oluvchi eng kichik yopiq qism fazo, shu sistemaning chiziqli qobig‘i deb ataladi va L ({x α }) ko‘rinishda belgi- lanadi. Agar L ({x α }) = L bo‘lsa, u holda {x α } sistema to‘la deyiladi. Masalalar 4.2.1. R haqiqiy sonlar fazosida normani kxk = |x| ko‘rinishda kiritish mumkinligini ko‘rsating. Yechimi. Norma aksiomalarini tekshiramiz. 1) kxk = |x| = 0 ⇔ x = 0; 2) kλxk = |λx| = |λ||x| = |λ|kxk; 3) kx + yk = |x + y| ≤ |x| + |y| = kxk + kyk. 4.2.2. R n fazoda normani kxk = v u u t n X k=1 x 2 k , x = (x 1 , x 2 , . . . , x n ) ko‘rinishda kiritish mumkinligini isbotlang. Yechimi. 1) kxk = s n P k=1 x 2 k = 0 ⇔ x 1 = x 2 = . . . = x n = 0 ⇔ x = 0; 2) kλxk = s n P k=1 (λx k ) 2 = s n P k=1 λ 2 x 2 k = s λ 2 n P k=1 x 2 k = |λ|kxk; 3 Ixtiyoriy x = (x 1 , x 2 , . . . , x n ), y = (y 1 , y 2 , . . . , y n ) elementlar uchun à n X k=1 x k y k ! 2 = n X k=1 x 2 k n X k=1 y 2 k − 1 2 n X k=1 n X i=1 (x k y i − y k x i ) 2 tengligi o‘rinli. Bu tenglikdan Koshi — Bunyakovskiy tengsizligi kelib chiqadi: à n X k=1 x k y k ! 2 ≤ n X k=1 x 2 k n X k=1 y 2 k . Bu tengsizlikdan foydalansak, 124 IV. Normalangan fazolar kx + yk 2 = n P k=1 (x k + y k ) 2 = n P k=1 x 2 k + 2 n P k=1 x k y k + n P k=1 y 2 k ≤ ≤ n P k=1 x 2 k + 2 s n P k=1 x 2 k s n P k=1 y 2 k + n P k=1 y 2 k = = Ãs n P k=1 x 2 k + s n P k=1 y 2 k ! 2 = (kxk + kyk) 2 munosabatiga ega bo‘lamiz. Natijada, kx + yk ≤ kxk + kyk. 4.2.3. C[a, b] fazosida normani kf k = max a≤t≤b |f (t)| ko‘rinishda kiritib, norma aksiomalarining bajarilshini tek- shiring. Yechimi. 1) kf k = max a≤t≤b |f (t)| = 0 ⇔ f ≡ 0; 2) kλf k = max a≤t≤b |λf )(t)| = max a≤t≤b {|λ||f (t)|} = |λ|kf k; 3) Ixtiyoriy f, g ∈ C[a, b] funksiyalar uchun |(f + g)(t)| = |f (t) + g(t)| ≤ |f (t)| + |g(t)| ≤ ≤ max a≤t≤b |f (t)| + max a≤t≤b |g(t)| = kf k + kgk Natijada, kf + gk ≤ kf k + kgk tengsizlikka ega bo‘lamiz. 4.2.4. X normalangan fazo bo‘lib, M uning bo‘sh bo‘lma- gan qism fazosi bo‘lsin. P = X/M faktor fazoda normani kξk = inf x∈ξ kxk ko‘rinishda kiritish mumkinligini isbotlang. Yechimi. 1) Agar ξ 0 = M (ya’ni ξ 0 – P ning nol elementi) bo‘lsa, u holda 0 ∈ ξ 0 (bu yerda 0 – X ning nol elementi). Shuning uchun kξ 0 k = 0. Aksincha, agar kξk = inf x∈ξ kxk = 0 bo‘lsa, u holda ξ sinfda 0 soniga yaqinlashuvchi ketma-ketlik mavjud bo‘ladi. M yopiq bo‘lgani uchun ξ sinf yopiq. Shuning uchun 0 ∈ ξ, ya’ni ξ = M. 2) Ixtiyoriy α ∈ K, x ∈ R uchun kαxk = |α| · kxk § 4.2 Normalangan fazolar 125 tengligi o‘rinli. Bu tenglikning ikki tomonidan ham x ∈ ξ bo‘yicha quyi chegara olib, quyidagi tenglikka ega bo‘lamiz: kαξk = |α| · kξk 3) ξ, η ∈ P bo‘lib, x ∈ ξ va y ∈ η bo‘lsin. U holda kξ + ηk ≤ kx + yk ≤ kxk + kyk tengsizligi bajariladi. Bu tengsizlikning o‘ng tomonidan x ∈ ξ, y ∈ η bo‘yicha quyi chegara olib, kξ + ηk ≤ kξk + kηk munosabatiga ega bo‘lamiz. 4.2.5. B(x 0 , r) ochiq sharning ochiq to‘plam ekanligini is- botlang. Yechimi. B(x 0 , r) ochiq shardan ixtiyoriy x 0 nuqta olib, B(x 0 , ε) ⊂ B(x 0 , r) munosabatni qanoatlantiruvchi ε > 0 sonning mavjudligini ko‘rsatamiz. ε = r − kx 0 − x 0 k bo‘lsin. x 0 ∈ B(x 0 , r) bo‘lgani uchun kx 0 − x 0 k < r. Shuning uchun ε = r − kx 0 − x 0 k > 0. B(x 0 , ε) atrofdan ixtiyoriy x 00 nuqta olaylik. U holda kx 00 − x 0 k < ε ⇒ kx 00 − x 0 k < r − kx 0 − x 0 k ⇒ kx 0 − x 0 k + kx 00 − x 0 k < r. Bundan kx 00 − x 0 k = kx 00 − x 0 + x 0 − x 0 k ≤ kx 00 − x 0 k + kx 0 − x 0 k < r, ya’ni x 00 ∈ B(x 0 , r) ⇒ B(x 0 , ε) ⊂ B(x 0 , r). 4.2.6. B[x 0 , r] yopiq sharning yopiq to‘plam ekanligini is- botlang. Yechimi. Teskarisini faraz qilaylik, ya’ni B[x 0 , r] yopiq shar yopiq to‘plam bo‘lmasin. U holda [B[x 0 , r]] 6= B[x 0 , r] ⇒ [B[x 0 , r]] \ B[x 0 , r] 6= ∅. B[x 0 , r]] \ B[x 0 , r] to‘plamning ixtiyoriy x 0 nuqtasini olamiz. x 0 / ∈ B[x 0 , r] bo‘lgani uchun kx 0 −x 0 k > r tengsizligi o‘rinli. ε = kx 0 −x 0 k−r bo‘lgan x 0 nuqtaning B(x 0 , ε) atrofidan ixtiyoriy x 00 nuqta olamiz. U holda kx 00 −x 0 k < ε ⇒ kx 00 −x 0 k < kx 0 −x 0 k−r ⇒ kx 0 −x 0 k−kx 00 −x 0 k > r ⇒ 126 IV. Normalangan fazolar ⇒ r < kx 0 −x 0 k−kx 00 −x 0 k ≤ kx 00 −x 0 k ⇒ x 00 / ∈ B[x 0 , r] ⇒ x 0 / ∈ [B[x 0 , r]]. Bu ziddiyat farazimizning noto‘g‘riligini anglatadi. Demak, B[x 0 , r] yopiq shar yopiq to‘plam bo‘ladi. 4.2.7. Agar B[a, r] ⊂ B[b, R] ⊂ X, X 6= {0}, bo‘lsa, u holda ka − bk ≤ R − r tengsizligini isbotlang. Yechimi. 1-hol. a = b bo‘lsin. X 6= {0} ekanligidan, shunday x 0 ∈ X mavjudki, ||x 0 − a|| = r bo‘ladi. U holda B[a, r] ⊂ B[a, R] bo‘lgani uchun ||x 0 − ak ≤ R tengsizligi o‘rinli. Bundan r = kx 0 − ak = kx 0 − ak ≤ R, ya’ni R − r ≥ 0 = ||a − b||. 2-hol. a 6= b bo‘lsin. X fazoda x = ka − bk + r ka − bk a − r ka − bk b ko‘rinishdagi elementini olsak, kx − ak = r tengligi o‘rinli bo‘ladi. Haqiqatan, kx − ak = ° ° ° ° ka − bk + r ka − bk a − r ka − bk b − a ° ° ° ° = r ka − bk ka − bk = r. Bundan x ∈ B[b, R]. Demak, ||x − b|| ≤ R, ya’ni R ≥ kx − bk = ° ° ° ° ka − bk + r ka − bk a − r ka − bk b − b ° ° ° ° = = ka − bk + r ka − bk ka − bk = ka − bk + r. Demak, R − r ≥ ||a − b||. 4.2.8. X normalangan fazoning ixtiyoriy x va y elementlari uchun kxk ≤ max{kx + yk, kx − yk} tengsizligini isbotlang. Yechimi. kxk ≤ kxk + |kx − yk − kx + yk| 2 = = k2xk + |kx − yk − kx + yk| 2 = = kx + y + x − yk + |kx − yk − kx + yk| 2 ≤ ≤ kx + yk + kx − yk + |kx − yk − kx + yk| 2 = = max{kx + yk, kx − yk}. § 4.2 Normalangan fazolar 127 4.2.9. X normalangan fazo bo‘lib, x n , x, y n , y ∈ X, n ∈ N, bo‘lsa, quyidagilarni isbotlang: a) agar x n → x, λ n → λ (λ n , λ ∈ K) bo‘lsa, u holda λ n x n → λx; b) agar x n → x bo‘lsa, u holda kx n k → kxk; c) agar x n → x va kx n − y n k → 0 bo‘lsa, u holda y n → x; d) agar x n → x bo‘lsa, u holda kx n − yk → kx − yk; e) agar x n → x, y n → y bo‘lsa, u holda kx n − y n k → kx − yk. Yechimi. a) kλ n x n − λxk = kλ n x n − λx n + λx n − λxk ≤ ≤ kλ n x n − λx n k + kλx n − λxk = = |λ n − λ|kx n k + |λ|kx n − xk → 0. Demak, kλ n x n − λxk → 0, shuning uchun λ n x n → λx. b) Normaning xossalaridan foydalanib quyidagi tengsizliklarni yoza olamiz: kx n k − kxk ≤ kx n − xk va kxk − kx n k ≤ kx − x n k = kx n − xk. Bu tengsizliklardan esa −kx n − xk ≤ kx n k − kxk ≤ kx n − xk qo‘sh tengsizliklariga ega bo‘lamiz. Natijada |kx n k − kxk| ≤ kx n − xk. kx n − xk → 0 bo‘lgani uchun |kx n k − kxk| → 0, ya’ni kx n k → kxk. c) ky n − xk = ky n − x n + x n − xk ≤ ≤ ky n − x n k + kx n − xk → 0. Shuning uchun ky n − xk → 0, ya’ni y n → x. d) Normaning xossalaridan quyidagi tengsizliklar kelib chiqadi: kx n − yk − kx − yk ≤ kx n − y − x + yk = kx n − xk va kx − yk − kx n − yk ≤ kx − y − x n + yk = kx − x n k = kx n − xk. Natijada −kx n − xk ≤ kx Download 1.55 Mb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling