Лекция Предмет «Методика преподавания математики и информатики»


При доказательстве необходимо соблюдать следующие правила доказательного рассуждения


Download 0.96 Mb.
bet45/102
Sana06.11.2023
Hajmi0.96 Mb.
#1751506
TuriЛекция
1   ...   41   42   43   44   45   46   47   48   ...   102
Bog'liq
3-УМК

При доказательстве необходимо соблюдать следующие правила доказательного рассуждения.

  1. Тезис должен быть логически определенным, ясным, точным и оставаться тождественным на протяжении всего доказательства или опровержения.

  2. Аргументы должны быть истинными, не противоречащими друг другу и являться достаточным основанием для подтверждения тезиса; истинность аргументов должна быть доказана самостоятельно, независимо от тезиса.

  3. Необходимо, чтобы тезис был заключением, логически следующим из аргументов по общим правилам умозаключений, или был бы получен в соответствии с правилами косвенного доказательства.

  4. Доказательство является обязательным этапом в процессе аргументации.

Все доказательства можно разделить на прямые и косвенные. При прямом доказательстве задача состоит в том, чтобы подыскать такие убедительные аргументы, из которых, по логическим правилам, получается тезис.
Пример. Нужно доказать, что сумма углов четырехугольника равна 3600. Из каких утверждений можно было бы вывести этот тезис? Отмечаем, что диагональ делит четырехугольник на два треугольника. Значит, сумма его углов равна сумме углов двух треугольников. известно, что сумма углов треугольника составляет 1800. Из этих положений выводим, что сумма углов четырехугольника равна 3600.
Косвенное доказательство устанавливает справедливость тезиса тем, что вскрывает ошибочность противоположного ему допущения, антитезиса. Поскольку косвенное доказательство использует отрицание доказываемого положения, оно является «доказательством от противного».
Пример. Нужно построить косвенное доказательство тезиса: «Квадрат не является окружностью». Выдвигается антитезис: «Квадрат есть окружность». Нетрудно показать ложность этого утверждения. С этой целью выводят из него следствия. Если хотя бы одно из них окажется ложным, это будет означать, что и само утверждение, из которого выведено следствие, также ложно. Неверным является, в частности, такое следствие: «У квадрата нет углов». Поскольку антитезис ложен, значит, тезис должен быть истинным.
Опровержение – это рассуждение, направленное против выдвинутого положения и имеющее своей целью установление его ошибочности или не недоказанности.

Download 0.96 Mb.

Do'stlaringiz bilan baham:
1   ...   41   42   43   44   45   46   47   48   ...   102




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling