Matematik analiz” fani bo’yicha “chiziqli funksionallar va ularga bog’liq misollar yechish
Download 59.1 Kb.
|
To\'raboyev kurs ishi
1.2 Normalangan fazolar
Ta’rif. Aytaylik X haqiqiy chiziqli fazo bo‘lib, uning har bir x elementiga haqiqiy, ‖𝑥‖ orqali belgilangan sonni mos qo‘yuvchi ‖∙‖: 𝑋 → 𝑅 akslantirish berilgan bo‘lsin. Agar bu akslantirish 1. Har doim ‖𝑥‖ ≥ 0. Shuningdek, 𝑥 = uchun ‖𝑥‖ = 0 va aksincha, agar ‖𝑥‖ = 0 bo‘lsa, u holda 𝑥 = ; 2. Ixtiyoriy son uchun ‖𝜆𝑥‖ = |𝜆| ∙ ‖𝑥‖; 3. Ixtiyoriy ikki 𝑥 va 𝑦 elementlar uchun ‖𝑥 + 𝑦‖ ≤ ‖𝑥‖ + ‖𝑦‖ shartlarni qanoatlantirsa, u norma deyiladi. Bu shartlar norma aksiomalari deb ham yuritiladi. Uchinchi shart uchburchak aksiomasi deyiladi. Norma kiritilgan chiziqli fazo normalangan fazo deyiladi. Odatda ‖𝑥‖ son 𝑥 elementning normasi deyiladi. Agar (𝑥, 𝑦) = ‖𝑥 − 𝑦‖ belgilash kiritsak, u holda (𝑥, 𝑦) metrika ekanligi bevosita ko‘rinib turibdi. Demak, har qanday normalangan fazo metrik fazo bo‘ladi. Aytaylik 𝑋 normalangan fazo bo‘lsin. elementning > 0 atrofi deb, 𝑈 = {𝑥: ‖𝑥‖ < } to‘plamga aytiladi. Bu kiritilgan 𝑈 to‘plam, norma yordamida aniqlangan metrika tilida, markazi nuqtada, radiusi bo‘lgan ochiq shar deyiladi. Shuningdek, 𝑥 ∈ 𝑋 elementning atrofi deb 𝑈𝑥 = 𝑥 + 𝑈 = {𝑥 + 𝑢, 𝑢 ∈ 𝑈} to‘plamga aytiladi. Eslatib o‘tish lozim, 𝑉 = {𝑥: ‖𝑥‖ ≤ } to‘plam markazi nuqtada, radiusi bo‘lgan yopiq shar deyiladi. Kelgusida, 𝑋1 = {𝑥: ‖𝑥‖ ≤ 1} to‘plam 𝑋 normalangan fazoning birlik shari deyiladi. Normalangan fazolar metrik fazolarning xususiy holi bo‘lgani uchun, normalangan fazolarning to‘la yoki to‘la emasligi haqida gap yuritish mumkin. Norma yordamida fazoning to‘laligi quyidagicha ifodalanadi: Aytaylik 𝑋 normalangan fazoda {𝑥𝑛} ketma-ketlik berilgan bo‘lsin. Ta’rif. Agar biror 𝑥 element uchun {‖𝑥𝑛 − 𝑥‖} sonli ketmaketlikning limiti 0 ga teng bo‘lsa, u holda {𝑥𝑛} ketma-ketlik 𝑥 ga yaqinlashadi deyiladi va 𝑥𝑛 → 𝑥 kabi belgilanadi. Shuningdek, agar {‖𝑥𝑛 − 𝑥𝑛+𝑚‖} sonli ketma-ketlikning limiti, ixtiyoriy m uchun 0 ga teng bo‘lsa, u holda {𝑥𝑛} ketmaketlik fundamental deyiladi. Agar X normalangan fazoda ixtiyoriy fundamental ketmaketlik yaqinlashuvchi bo‘lsa, u holda X to‘la normalangan fazo deyiladi. To‘la normalangan fazo qisqacha Banax fazosi yoki B-fazo deyiladi va normalangan fazolar ichida muhim rol o‘ynaydi. Misollar. 1) Agar 𝑥 haqiqiy son uchun ‖𝑥‖ = |𝑥| deb olsak, u holda chiziqli fazo, ya’ni to‘g‘ri chiziq normalangan fazo bo‘ladi. 2) n o‘lchamli haqiqiy fazoda 𝑥 = ( , . . . , ) element uchun normani quyidagicha kiritamiz: Bunda normaning 1, 2 shartlari bajarilishi ravshan, 3 shart esa Koshi – Bunyakovskiy tengsizligidan kelib chiqadi. Shu fazoning o‘zida quyidagi normalarni ham kiritish mumkin: 4) 𝑚 chiziqli fazoda = ( , . . . , ) elementining normasi deb Songa aytamiz. Bu misol uchun norma aksiomalari bevosita tekshiriladi. Download 59.1 Kb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling