Matematika tarixi


Download 1.06 Mb.
Pdf ko'rish
bet25/34
Sana30.10.2023
Hajmi1.06 Mb.
#1734196
1   ...   21   22   23   24   25   26   27   28   ...   34
Bog'liq
Matematika tarixi (A.Normatov)

Funktsiya tushunchasi ikki xil ko’rinishga ega: munosabat ko’rinishga va ana-
litik ifodaga. Funktsiya tushunchasining dastlabki ko’rinishlari antik matematiklarn-
ing geometrik o’rinlari va turli-tuman tablitsalaridir. So’ngroq Diofantning simvolik 
apparatidir. Keyinroq esa algebraik va trigonometrik funktsiyalar, logarifmik va 
boshqa funktsiyalar . Funktsiyaning munosabatlar ko’rinishdagi g’oyasini funktsiya 
termini va simvoli orqali beriladi. Bu davr matematiklari konkret funktsiyalar ustida 
operatsiyalar bajarganliklari uchun ham funktsiyaga bergan ta’riflari aynan shu 
mazmunni aks ettirgan. 
“Funktsiya – bu analitik ifodadir” – 1718 yil I.Bernulli. Eyler “Analizga kirish” (2 
tomlik, 1718 yil) asarida “O’zgaruvchi miqdor funktsiyasi bu shu o’zgaruvchi miqdor 
va sondan qandaydir usul bilan tuzilgan analitik ifodadir”. Argumentning haqiqiy va 
mavhum qiymatalarini e’tiborga olgan. Funktsiyani tuzish uchun u arifmetik amal-
lar, daraja, ildiz, integrallash amallari yordamida hosil qilgan. So’ngra funktsiyalarni 
xossalariga qarab klassifikatsiyalaydi: bir qiymatli, ko’p qiymatli, juft-toq, va xoka-
zo. Bularni qatoriga elementar trantsendent funktsiyalar 
coz
shz
z
e
z
,
,
ln
,
larni kiri-
tadi va barcha funktsiyalarni 
...
)
(
2
2
1
0
z
a
z
a
a
z
f
darajali qator ko’rinishida ta-
savvur qiladi. Qator yordamida ratsional, irratsional, kasr-ratsional, ko’rsatkichli va 
logarifmik funktsiyalar sinfini o’rganadi (funktsiya tablitsasi). 
Birinchi marta N>0 uchun a
x
=N bo’lsa, u holda 
N
х
a
log
isbotlanadi va 
n
n
z
i
z
n
z
e
i
z
e
1
1
lim
isbotlanadi. 
Trigonometrik funktsiyalar qam analitik usulda kiritiladi (birlik aylanasiz). 
Ќossalarni o’rganib 
v
i
v
e
iv
sin
cos
- Eyler formulasini chiqaradi. 
Qatorga yoyishdan tashqari u funktsiyani cheksiz ko’paytuvchilar ko’rinishida 
ham tasvirlaydi. 
Masalan:
2
2
2
2
2
2
9
1
4
1
1
sin
z
z
z
z
z
2
2
2
2
2
2
25
4
1
9
4
1
4
1
cos
z
z
z
z
Uzluksiz kasrlarning xossalaridan funktsiyani elementar kasrlar yig’indisi 
ko’rinishda ham tasvirlaydi. 
Xulosa qilib XVIII asr matematikasida funktsiya tushunchasi Eyler tasavvuri-
dagidek bo’lib, har qanday analitik ifodani qator ko’rinishida tasvirlash mumkin deb 
qaralgan (universal qator sifatida Teylor qatori hisoblangan). Bu esa shu davrga ke-
lib to’plangan ma’lumotlarga to’sqinlik qila boshladi. o’eometrik ifodalangan har 
qanday chiziqni funktsiya sifatida qarash g’oyasi Eylerda paydo bo’ladi. Bu haqda 
ko’plab olimlar bosh qotirishadi: Teylor, Dalamber, D.Bernulli va boshqalar. 
Funktsiya tushunchasi XIX asrda ham rivojlanib boradi. Qisqacha shular haqi-
da to’xtalib o’taylik. 
1807 yili Furьe issiqlikning analitik nazariyasiga oid ishlarida (1822 yili chop 
etilgan) chekli uchastkalarda turli tenglamalar bilan berilgan bog’liqli chiziqlar 
www.ziyouz.com kutubxonasi


70 
1
0
)
sin
cos
(
2
)
(
n
n
n
nx
b
nx
a
a
x
f
qator bilan tasvirlanishini isbotlaydi. Bu erdagi 
nxdx
x
f
b
nxdx
x
f
a
n
n
sin
)
(
1
,
cos
)
(
1
Furьe koeffitsientlari. 
Natijada Eyler tasavvuridagi funktsiyalar, ya’ni qo’lning erkin harakati bilan 
chizilgan bog’liqli chiziqlar, trigonometrik qatorlarning analitik apparati bilan ifoda-
lash mumkin bo’ladi. Bu funktsional munosabatlarga ta’rif berish imkonini beradi. 
Furьe “Issiqlikning analitik nazariyasi” asarida va Lakruda 1810 y “Qiymati (u
bir yoki bir necha boshqa miqdorlarga (x) bog’liq bo’lgan miqdor, oldingilarning 
funktsiyasi deb ataladi; bunda keyingi miqdorni hosil qilish uchun oldingi miqdorlar 
ustida qanday operatsiyalar bajarishimizni bilishimiz shart emas”, mazmunidagi 
ta’riflar berishadi. 
1834 yilda Lobachevskiy “Umumiy tushunchalar, x-ning har bir qiymati uchun 
beriladigan va x bilan birga o’zgaradigan x-ning funktsiyasini son deyishini taklif 
etadi. Funktsiyaning qiymati yoki analitik ifoda bilan, yoki ma’lum bir shart bilan 
yoki bog’lanish mavjud bo’lib o’zi noma’lim qolishi mumkin”. 
1837 yili shunga o’xshash ta’rifni Direxle beradi. Funktsiya masalasi hal 
bo’lgandek edi, lekin tez orada 1876 yili P. Dyubua – Reyman shunday uzluksiz 
funktsiya tuzadiki, uni Furьe qatoriga yoyganda ayrim nuqtalari uzoqlashuvchi 
bo’ladi. Bu funktsiyani tuzishda Dyubuaga Reyman funktsiyasini uzluksiz, chekli ho-
silaga, chegaralanganligi, bo’laklarda monotonligi, integralining mavjudligi, teng-
sizlikning bajarilishi shartlarini jamlash uslubidan foydalandi. Bu uslubni sistemali 
qo’llash natijasida [0; 2 ] da davriy va uzluksiz bo’lgan hamda istalgan nuqtasida 
yuqoridagi xususiyatlar jamlangan f(x) funktsiyani tuzishga muvaffaq bo’ladi. Shun-
ga mos Furьe qatori segmentning istalgan nuqtasida uzoqlashuvchi bo’ladi. Bu fakt 
funktsiya tushunchasining umumiy talqiniga zid bo’ladi. Bundan so’ng yana izla-
nishlar boshlanadi. XIX asrning 70-yillari o’. Kantor to’plamlar nazariyasi yordamida 
egri chiziqlarga tushuncha beradi. 1882 yil K.Jordan koordinatalari x=x(t), u=u(t) 
tenglamalar bilan berilgan [t,T] kesmada uzluksiz bo’lgan tekislik nuqtalarining bir-
lashmasidan iborat bo’lgan funktsiyani tuzadi. 
1890 yilda esa Peano qandaydir kvadratning ichki nuqtalarini to’ldiruvchi Jor-
dan chiziqlari mavjud ekanligini ko’rsatadi. Masalan: x’(t) va y’(t) uzluksiz hosilalar 
mavjud bo’lsa, u holda egri chiziq 
dt
t
y
t
x
l
a
b
I
I
)
(
)
(
2
2
uzunlikka ega bo’lgan chiziq-
dan iborat. 
1885 yil Veyershtrass [a;b] kesmada uzluksiz bo’lgan har qanday f(x) funktsiya 
shu kesmada tekis yaqinlashuvchi butun algebraik ko’phadlar 
1
)
(
n
n
x
P
yig’indisi 
ko’rinishida analitik tasvirlash mumkinligini isbotlaydi. 
Ko’rinib turibdiki funktsiya nazariyasi rivojlangan sari u faktlar bilan boyib 
bordi, yangi sohalar vujudga keldi. Shu bilan birga uning roli ham oshib boradi. Ana-
www.ziyouz.com kutubxonasi


71 
lizga kirish rolidan matematikaning eng yuqori bosqichi funktsiyalar nazariyasi da-
rajasiga ko’tariladi. 
Endi XVIII asr matematiklarning ayrim ishlari bilan tanishaylik: 

Download 1.06 Mb.

Do'stlaringiz bilan baham:
1   ...   21   22   23   24   25   26   27   28   ...   34




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling