Mavzu: Qaror qabul qilish qoidalari va mezonlari. Bajardi


Download 1.55 Mb.
bet2/12
Sana22.01.2023
Hajmi1.55 Mb.
#1108887
1   2   3   4   5   6   7   8   9   ...   12
Bog'liq
1-30Kucharov.M TI 1M

Vc =Tc∙ΔFcDc
Полезные сигналы отличаются от мешающих тем, что полезные сигналы служат для передачи сообщений, в то время как мешающие являются причиной их искажения (потери информации).
Часто полезный сигнал называют просто сигналом, а мешающий – помехой. Сигналы и помехи, рассматриваемые в совокупности, будем называть колебаниями.
Помехи могут быть естественными и преднамеренными (искусственными), шумовыми (флюктуационными) и импульсными, активными и пассивными и т.д.
Необходимо отметить, что одно и то же колебание может быть полезным сигналом по отношению, например, к одной системе связи или радиолокации и помехой – по отношению к другой.
Стоит также отметить, что не все помехи, как и не все сигналы, являются случайными (если помеха детерминированна, то её можно исключить из наблюдаемого колебания и таким образом избавиться от её вредного воздействия на сообщение).
На рис. 1.6 приведены примеры случайного сигнала и случайной (шумовой) помехи.

Рис. 1.6. Случайный (речевой) сигнал (а) и случайная помеха (шум) (б)
По способу взаимодействия с сигналом помехи подразделяются на аддитивные (от англ. add – складывать), мультипликативные (от англ. multiply – умножать) и смешанные (т.е. все взаимодействия, не сводимые к аддитивному или мультипликативному).
1.2. Общие принципы построения систем связи
Современная система связи представляет собой сложную совокупность устройств, выполняющих преобразования сообщений и сигналов с целью наиболее эффективной передачи информации.
К показателям эффективности относятся достоверность и скорость передачи информации, а также некоторые другие величины.
Сообщения – это совокупность сведений об окружающих нас предметах, явлениях. Сообщения могут быть звуковыми (речь, музыка), световыми (изображения неподвижных и подвижных объектов), текстовыми (буквенно-цифровые сообщения).
Обобщенная структурная схема системы связи (рис. 1.7) отражает наиболее типичные преобразования, которым подвергается сообщение в системе связи, она справедлива для любых видов сообщений. Рассмотрим назначение основных блоков системы связи.

Рис. 1.7. Обобщенная структурная схема системы связи
Источник информации – источник сообщения подлежащего передаче (человек, окружающая среда и т.п.).
Кодер:
а) преобразует неэлектрическое сообщение в электрический сигнал
б) преобразует аналоговый (непрерывный) сигнал в дискретный
(цифровой);
в) осуществляет кодирование с целью уменьшения необходимой
скорости передачи информации при заданном качестве
(устранение избыточности сообщения);
г) осуществляет помехоустойчивое кодирование, позволяющее
улучшить качество принимаемого сообщения.
Генератор несущий – генерирует колебания с постоянной амплитудой, частотой, фазой.
Модулятор – изменяет амплитуду, частоту или фазу носителя в соответствие с модулирующим сигналом, поступающим от кодера.
Выходное устройство – усиливает сигнал, для обеспечения заданного качества связи и ограничивает спектр излучаемого сигнала до полосы частот, отведённой для заданной системы связи.
Кодер, модулятор, генератор несущей и выходное устройство образуют передатчик.
Линия связи – совокупность технических устройств (кабель, двухпроводная линия, оптическая линия связи) или эфир, по которым сигнал поступает от передатчика к приёмнику.
Напряжение на входе приёмника можно записать как:
=K(t) +x(t)
Uпрм(t) – напряжение на входе приёмника;
K(t) – мультипликативная помеха (это переменный коэффициент
передачи линии связи);
Uпрд – напряжение на выходе передатчика;
x(t) – аддитивная помеха (тепловой шум, помеха от соседних
передатчиков, помехи от различных технических устройств
и т.п.).
Входное устройство – выделяет сигнал своего передатчика, отфильтровывает (не пропускает) сигналы соседних по частоте передатчиков и часть помех, усиливает сигнал.
Демодулятор – преобразует ВЧ модулированный сигнал в НЧ модулирующий (~соответствующий сигналу на входе модулятора).
Декодер:
а) принимает решение по каждой посылке (1 или 0);
б) декодирует кодовые комбинации, исправляет часть ошибок;
г) преобразует кодовые комбинации в сообщения удобные для получателя.
Получатель сообщения – человек, компьютер или другие технические устройства.
Входное устройство, демодулятор и декодер образуют приемник.
КОДЕР + ДЕКОДЕР = КОДЕК
МОДУЛЯТОР + ДЕМОДУЛЯТОР = МОДЕМ
КОДЕР+МОДУЛЯТОР+ДЕКОДЕР+ДЕМОДУЛЯТОР = КОДЕМ
С кодированием не следует путать шифрование сообщений.
Цель шифрования состоит в предотвращении несанкционированного извлечения или преднамеренного изменения информации. При шифровании производится замена открытого сообщения шифрограммой (шифр-текстом), а при расшифровании происходит обратное преобразование. Шифрование выполняется до преобразования сообщения в первичный сигнал или в кодовую последовательность.
Таким образом, для модуляции в зависимости от сложности системы применяется первичный сигнал или последовательность кодовых символов.
В качестве переносчика часто используют гармоническое колебание A∙cos(ωt+φ), которое имеет три параметра: амплитуду A, круговую частоту ω = 2πf и начальную фазу φ. Поэтому возможны три вида модуляции гармонического переносчика аналоговым сигналом: амплитудная модуляция (АМ), частотная модуляция (ЧМ) либо фазовая модуляция (ФМ), рис. 1.8.

Рис. 1.8. Несущее гармоническое колебание (а) и получаемые на его основе модулированные сигналы: АМ (б), ЧМ (в) и ФМ (г)
Во многих случаях роль переносчика в системах связи играет периодическая последовательность импульсов одинаковой формы (часто импульсы считают в первом приближении прямоугольными).
При заданной форме импульсов последовательность характеризуется амплитудным (пиковым) значением, длительностью импульсов и периодом повторения.
Поэтому при аналоговом первичном сигнале различают:
– амплитудно-импульсную модуляцию (АИМ), по закону изменения первичного сигнала изменяется амплитуда импульсов;
– широтно-импульсную модуляцию (ШИМ), изменяется длительность («ширина») импульсов;
– времяимпульсную модуляцию (ВИМ), изменяется время задержки импульсов относительно среднего положения;
– частотно-импульсную модуляцию (ЧИМ), в такт с первичным сигналом изменяется частота следования импульсов.
Широко применяют также модуляцию гармонического колебания квантованным (цифровым) первичным сигналом.
Различают три вида дискретной (цифровой) модуляции (манипуляции): амплитудную (ДАМ, ЦАМ), частотную (ДЧМ, ЦЧМ) и фазовую (ДФМ, ЦФМ), рис. 1.9.

Рис. 1.9. Виды дискретной модуляции (манипуляции) гармонического колебания: ДАМ (а), ДЧМ (б), ДФМ (в)
Колебание при дискретной модуляции характеризуют технической скоростью (скоростью модуляции, скоростью телеграфирования), равной количеству элементарных посылок в секунду. Единицей измерения скорости модуляции является бод (1 бод соответствует одной посылке в секунду).
Демодуляция заключается в восстановлении первичного сигнала по принятому искаженному колебанию, а декодирование – в восстановлении дискретного сообщения по демодулированному сигналу.
Часто перед демодуляцией применяют дополнительное преобразование с целью повышения достоверности (уменьшения вероятности ошибки). Такое преобразование называют обработкой.
Оптимальной называется обработка, обеспечивающая наивысшую достоверность решения.
Если оптимальная обработка оказывается слишком сложной и/или дорогостоящей, применяют квазиоптимальную (субоптимальную) обработку, которая проще и дешевле и при этом обеспечивает достоверность, близкую к предельной.
Часто квазиоптимальная обработка представляет собой фильтрацию принятого колебания с целью подавления помех.

Download 1.55 Mb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8   9   ...   12




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling