Mavzu: stereometriya kursini o‘qitish metodikasi aylanish figuralari


Javob: πL2 ( – cosα). 7 – masala


Download 0.67 Mb.
bet3/8
Sana04.05.2023
Hajmi0.67 Mb.
#1425308
1   2   3   4   5   6   7   8
Bog'liq
nazariya 2 (2)

Javob: πL2 ( – cosα).


7

– masala.
Radiusi R ga teng bo‘lgan shardan o‘q kesimida α burchak tashkil qiluvchi shar sektorining hajmi va to‘la sirtini toping.
Yechilishi:
Shar radiusini R bilan, segment balandligini DC =h va
AD kesmani r bilan belgilaylik. Sektor hajmi V= πR2h ga
teng. ∆ACD uchburchakda ACD = , bundan h = rtg .
∆ADO uchburchakdan r= R sin . Ma’lumki,
V= πR2h= R3 sin2 .
Sektorning to‘la sirti ABC segment yuzi 2πRh va AOB konus yon sirti πRr lardan tashkil topadi.
Demak, S = 2πRh + πRr = πR2sin (2tg +1).
Javob: V = R3sin2 ; S =πR2sin (2tg +1).




8 – masala. Silindrning balandligi 5 ga, uning asosiga ichki
chizilgan muntazam uchburchakning tomoni 3 ga teng.
Silindrning hajmini toping.
Yechilishi:
Ma’lumki silindr hajmi V =Sasos*H = πR2H formula
bilan hisoblanadi. Bu yerda Н =5 shartda berilgan. R radiusni
ABC muntazam uchburchakdan foydalanib topamiz. Ya’ni

R = OC = = · = .

ekanligidan R =3 . Demak, V = 45π .


Javob: 45 π.


9

– masala.
silindrning yon sirti yoyilganda uning diagonali asos tekisligi bilan 450 burchak tashkil qiladi. silindrning yon sirti 144π2 ga teng. silindr asosining radiusini toping.
Yechilishi:
Masala shartidan Syon = 144π2
ekanligiga ko‘ra,

AB · BS = 144π2  AB =BC =12 π.


Silindr asosi aylanasi uzunligi

AB ga teng ekanligidan,
2πR =AB, 2πR = 12π
demak R =6.
Javob: 6


10 – masala. Radiusi 5 ga teng bo‘lgan sharga ichki chizilgan konusning balandligi 4 ga teng. Konusning hajmini toping.

Download 0.67 Mb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling