Natural va butun sonlar


Download 5.8 Mb.
bet21/46
Sana21.11.2023
Hajmi5.8 Mb.
#1793365
1   ...   17   18   19   20   21   22   23   24   ...   46
Bog'liq
§. Natural va butun sonlar-hozir.org

(1-x1)2+(x1 -x2)2+(x2 -x3)2+……+(xn-1 –xn)2+xn2 = tenglamani yagona yechimi borligini ko’rsating. Hamda bu yechimlarni o’zini toping.
45. Shunday nN sonini topingki tenglamalar sistemasi qanoatlantiruvchi x1, x2 …….xn musbat sonlar mavjud bo’lsin. Topilgan n natural soni bo’yicha sistemani yeching.
46. Quyidagi tengsizliklarni doimo to’g’riligini ko’rsating.
1) (a>0)
2) )
3.

4.


5. (2n)! < (n(n+1))n
6. (
7. Shlyomilx masalasi. n>2 uchun quyidagi tengsizlikni doimo o’rinli ekanligiligi ko’rsating.



8.
9.
10.
11. ab2c3d4
12. x2+y2+z2xy+yz+xz
13. x2+y2+1 xy+x+y
14. x4+y4+88xy
15. a2b2+b2c2+a2c2abc(a+b+c)
16. 2(a3+b3+c3) ab(a+b)+ac(a+c)+bc(b+c)
17. x2 -5xy+7y2 0
18. 4xy –3x2 -8y20

19. x2 +2xy+3y2+2x+6y+4>0

20. (n>1)
21.
22. Agar a,b,c musbat sonlar va abc =1 shartlar o’rinli bo’lsa, a+b+c+ab+bc+ac6 tengsizlik doimo to’g’riligini ko’rsating.
23. Agar a>b va ab=2 shartlar o’rinli bo’lsa, tengsizlik doimo to’g’riligini ko’rsating.
24. Agar a,b,c nomanfiy sonlarning yig’indisi 1 ga teng bo’lsa, (1+a)(1+b)(1+c)8(1-a)(1-b)(1-c)
25.Agar a1, a2,…..an musbat sonlar uchun tengsizlik doimo to’g’riligini ko’rsating.
26. x2 + 3
27. x+ 3 (x>0)

28.

29. nn>1 (

30.

47. tengsizliklar sistemasini yeching.
A) [0;100] B) [0;100) C) [0;101] D) [0; )
48. a, b, c va d butun sonlarda P(x) = ax3+bx2+cx+d (a ko’phad uchun P(15)=3 va P(21)=12 shartlarni qanoatlantirsa, a+b+c+d ning qiymatini toping.
A) 10 B)25 C)36 D)

48. Agar x>0, y>0, z>0 va x+y+z =12 shartlar o’rinli bo’lsa, U = x2yz3 ifodaning eng katta qiymatini toping.

A)6912 B)6000 C) 2000 D)aniqlab bo’lmaydi



  1. - §. Modulli ifodalar

x haqiqiy sonning absolyut qiymati (moduli) deb nomanfiy bo’lgan ko’rinishdagi songa aytiladi. Uning umumiy ko’rinishi quyidagicha bo’ladi.





ning geometrik ma’nosi koordinata boshidan x gacha bo’lgan masofani anglatadi.
Absolyut qiymatlar bo’yicha quyidagi munosabatlar o’rinlidir.






  1. -




  2. (b ) tengsizlik -b tengsizlikka ekvivalent hisoblanadi.









  3. Max(a;b) =


  4. min(a;b) =



1. ifodaningqiymatinimodulbelgisisizyozing.

A)1 B)2 C)3 D)4


2. ifodaningqiymatinimodulbelgisisizyozing.
A)1B)2 C)3 D)4
3.
ifodaningqiymatinimodulbelgisisizyozing.
A)1B)2C)3 D)4
4.
ifodaningqiymatinimodulbelgisisizyozing.
A)1B)2 C)3 D)4
5.

Ifodaning qiymatini modul belgisisiz yozing.

A) B) C) D)
6. ifodanisoddalashtiring. ( xϵ(– ∞; 1) )
A) x2 +x+1 B) – (x2+x+1) C)x2 +x D)x2– x+1
40. ifodanisoddalashtiring.
( xϵ(1; 3) )
A) x2 +x+1 B) –(x2 +x+1) C)x2 +x D)x2– x+1
41. ifodanisoddalashtiring.( xϵ(3; ∞) )

A) x2 +x+1B) – (x2 +x+1) C)x2 +x D)x2– x+1


42. ifodanisoddalashtiring. ( aϵ(– ∞; – 2) )

A)– a/2 B) (a – 1)/2 C) a(a – 1)/2 D) a(a + 1)/2


43. ifodanisoddalashtiring.( aϵ(– 2; ∞) )
A) – a/2 B) (a – 1)/2C) a(a – 1)/2 D) a(a + 1)/2
44. ifodanisoddalashtiring. ( mϵ(– ∞; – 2) )

A) 1/(m + 2) B) – 1/(m + 2) C) 1/(m – 2) D)– 1/(m – 2)


45. ifodanisoddalashtiring. ( mϵ(– 2; 0) )

A)1/(m + 2) B) – 1/(m + 2) C) 1/(m – 2) D) – 1/(m – 2)


46. ifodanisoddalashtiring. ( mϵ(3; ∞) )

A) 1/(m + 2) B) – 1/(m + 2) C) 1/(m – 2) D) – 1/(m – 2)


47. ifodanisoddalashtiring. ( mϵ(0; 3) )
A) 1/(m + 2) B) – 1/(m + 2) C) 1/(m – 2) D) – 1/(m – 2)
48. ifodanisoddalashtiring. ( xϵ(– ∞; – 1) )

A) x– 2 B)(x2 + 4)/(x – 2) C) –(x+2) D) x+2


49. ifodanisoddalashtiring.( xϵ(– 1; 1) )
A) x– 2B)(x2 + 4)/(x – 2) C) –(x+2) D) x+2
50. ifodanisoddalashtiring. ( xϵ(1; 2) )
A) x– 2 B)(x2 + 4)/(x – 2)C) –(x+2) D) x+2
51. ifodanisoddalashtiring. ( xϵ(2; ∞) )
A) x– 2 B)(x2 + 4)/(x – 2) C) –(x+2) D) x+2
52. ifodanisoddalashtiring. ( xϵ(– ∞; – 1) )

A)x/(x – 1) B) x/(1 – x) C) – x/(x + 1) D) x/(x + 1)


53. ifodanisoddalashtiring. ( xϵ(– 1; 0) )
A) x/(x – 1) B) x/(1 – x) C) – x/(x + 1) D) x/(x + 1)
54. ifodanisoddalashtiring. ( xϵ[0; 1) )
A) x/(x – 1) B) x/(1 – x) C) – x/(x + 1) D) x/(x + 1)
55. ifodanisoddalashtiring. ( xϵ(1; ∞) )
A) x/(x – 1) B) x/(1 – x) C) – x/(x + 1)D) x/(x + 1)
56. ifodanisoddalashtiring. ( xϵ(– ∞; 2) )

A) x2 – 4x–12 B) (x+2)2 C) x2 – 4x+12 D)x2 + 4x+12


57. ifodanisoddalashtiring. ( xϵ(2; ∞) )
A) x2 – 4x–12B) (x+2)2 C) x2 – 4x+12 D)x2 + 4x+12
58. ifodanisoddalashtiring. ( xϵ(–∞; 0) )

A)– 1/x B) 1/x C)x D)–x


59. ifodanisoddalashtiring.( xϵ(0; 1) )

A) – 1/x B) 1/x C)x D)– x


60. ifodanisoddalashtiring.( xϵ(1; 2) )

A)– 1/x B) 1/x C)x D)– x


61. ifodanisoddalashtiring. ( xϵ(2; 3) )
A)– 1/xB) 1/x C)x D)– x
62. ifodanisoddalashtiring.( xϵ(3; ∞) )
A)– 1/xB) 1/x C)x D)– x
63. ifodanisoddalashtiring.( xϵ( – ∞; – 3) )

A) 1/(a + 1) B) 1/(a + 3) C) 1/(a – 1) D) 1/(a – 3)


64. ifodanisoddalashtiring. ( xϵ(– 3; – 1) )

A) 1/(a + 1) B) 1/(a + 3) C) 1/(a – 1) D) 1/(a – 3)


65. ifodanisoddalashtiring. ( xϵ(–1; 2) )

A) 1/(a + 1) B) 1/(a + 3) C) 1/(a – 1) D) 1/(a – 3)


66. ifodanisoddalashtiring.( xϵ(2; ∞) )
A) 1/(a + 1) B) 1/(a + 3) C) 1/(a – 1) D) 1/(a – 3)
67. ifodanisoddalashtiring. ( xϵ(– ∞; 0) )

A) B) C) D)


68. ifodanisoddalashtiring.( xϵ(0; 1) )

A) B) C) D)


69. ifodanisoddalashtiring. ( xϵ[ 1; ∞) )

A) B) C) D)


70. ifodanisoddalashtiring.( xϵ(– ∞; 0) )

A) B) C) D)


71. ifodanisoddalashtiring.( xϵ[ 0; 1/3) )

A) B) C) D)


72. ifodanisoddalashtiring.( xϵ(1/3; 1) )

A) B) C) D)


73. ifodanisoddalashtiring. ( xϵ(1; ∞) )

A) B) C) D)


74. ifodanisoddalashtiring.( xϵ( – ∞; – 3/2) )

A) B) C) D)


75. ifodanisoddalashtiring.( xϵ(– 3/2; 0) )

A) B) C) D)


76. ifodanisoddalashtiring.( xϵ(0; 3) )

A) B) C) D)


77. ifodanisoddalashtiring.( xϵ(3; ∞) )

A) B) C) D)


78. |−abc| = −abc, |a−b| = −b + a va |−b| = b bo’lsa, quyidagilardan qaysi biri har doim o’rinli.

A) b<0 B) 0 C) c<0 D) b


79. funksiyaning eng katta qiymatini toping
A) 9 B) 12 C) 15 D) 24



  1. Download 5.8 Mb.

    Do'stlaringiz bilan baham:
1   ...   17   18   19   20   21   22   23   24   ...   46




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling