O‘zbеkistоn rеspublikasi оliy va o‘rta maхsus ta’lim vazirligi urganch davlat univеrsitеti


Download 480.4 Kb.
bet9/9
Sana04.04.2023
Hajmi480.4 Kb.
#1328045
1   2   3   4   5   6   7   8   9
Bog'liq
Jahongir BMI 2

Natija 3.1. Agar boshlang‘ich shartdagi funksiya haqiqiy analitik funksiya bo‘lsa, u holda unga mos keluvchi lakunalar uzunliklari eksponensial ravishda nolga intiladi, bu lakunalar funksiyaga ham mos keladi. Shuning uchun yechim o‘zgaruvchi bo‘yicha haqiqiy analitik funksiya bo‘ladi.
Natija 3.2. Agar boshlang‘ich shartdagi funksiya davrga ega bo‘lsa, u holda undga mos keluvchi (Xoxshtad teoremasiga asosan) nomerlari ga karrali bo‘lmagan barcha chekli lakunalar yopiladi, bu lakunalar koeffitsiyentga ham mos keladi. Shuning uchun yechim o‘zgaruvchi bo‘yicha davrga ega bo‘ladi. Bu yerda natural son va lakunaning nomeri .

Xulosa
Ushbu kurs ishida davriy koeffitsiyentli vaznli Shturm – Liuvill operatorining teskari spektral usuli yordamida davriy funksiyalar sinfida moslangan manbali Kamassa – Holm tenglamasi uchun Koshi masalasining yechimini topish algoritmi keltirildi. Ushbu kurs ishida Dubrovin differensial tenglamalar sistemasining analogi olindi.
Kurs ishida erishilgan natijalar va qo‘llanilgan usullar differensial tenglamalar nazariyasida, matematik fizikada, mexnikada shuningdek amaliy masalalarni yechishda qo‘llanilishi mumkin.


FOYDALANILGAN ADABIYOTLAR
[1] Camassa R. and Holm D., An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., 71 (1993), 1661–1664.
[2] Johnson R., Camassa–Holm Korteweg-de Vries and related models for water waves, J. Fluid Mech., 455 (2002), 63–82.
[3] Johnson R., The Camassa–Holm equation for water waves moving over a shear flow, Fluid Dynam. Res., 33 (2003), 97–111.
[4] Johnson R., The classical problem of water waves: a reservoir of integrable and nearlyintegrable equations, J. Nonlinear Math. Phys., 10 (2003), 72–92.
[5] Alber M. S., Camassa R., Holm D. D. and Marsden J. E., The geometry of peaked solitons and billiard solutions of a class of integrable PDE’s, Lett.Math.Phys., 32 (1994), 137–151.
[6] Constantin A., Existence of permanent and breaking waves for a shallow water equation: a geometric approach, Ann.Inst.Fourier (Grenoble), 50 (2000), 321–362.
[7] Misiolek G., A shallow water equation as a geodesic flow on the Bott-Virasoro group, J.Geom.Phys.,24 (1998), 203–208.
[8] Alber M. S., Camassa R., Holm D. D. and Marsden J. E., On the link between umbilic geodesics and soliton solutions of nonlinear PDE’s. Proc. Roy. Soc. London Ser. A, 450 (1995), 677–692.
[9] Constantin A., Gerdjikov V. S. and Ivanov R. I., Inverse scattering transform for the Camassa-Holm equation, Inverse Problems, 22 (2006), 2197–2207.
[10] Gesztesy F. and Holden H., Real-valued algebro-geometric solutions of the Camassa-Holm hierarchy, Phil.Trans.R.Soc.A., 366 (2008), 1025– 1054.
[11] Novikov V., Generalisations of the Camassa-Holm equation. Journal of Physics A Mathematical and Theoretical, 42 (2009), 1-11.
[12] Rodriguez-Blanco G., On the Cauchy Problem for the Camassa–Holm Equation, Nonlinear Anal., 46 (2001), 309–327.
[13] G. Yergaliyeva, T. Myrzakul, G. Nugmanova, R. Myrzakulov. Camassa-Holm and Myrzakulov-CIV Equations with Self-Consistent Sources: Geometry and Peakon Solutions. Geometry, Integrability and Quantization, 21 (2020), 310-319.
[14] Ivanov R.I., Equations of the Camassa–Holm Hierarchy, TMF, 160 (2009), 93–101
[15] Xinhui Lu, Aiyong Chen, Tongjie Deng. Orbital Stability of Peakons for a Generalized Camassa-Holm Equation. Journal of Applied Mathematics and Physics, 7 (2019), 2200-2211
[16] Guo Z., Liu X., and Qu C., Stability of Peakons for the Generalized Modified Camassa-Holm Equation. Journal of Differential Equations, 266 (2019), 7749-7779.
[17] Yin J. L. and Fan X. H., Orbital Stability of Floating Periodic Peakons for the CamassaHolm Equation. Nonlinear Analysis, 11 (2009), 4021-4026.
[18] Korotayev E., Inverse Spectral Problem for the Periodic Camassa-Holm Equation. Journal of Nonlinear Mathematical Physics, 11 (2004), 499–507.
[19] Melnikov V. K., A direct method for deriving a multisoliton solution for the problem of interaction of waves on the x,y plane. Commun, Math. Phys., 112 (1987), 63952.
[20] Melnikov V. K., Integration method of the Korteweg-de Vries equation with a self-consistent source. Phys.Lett. A, 133 (1998), 4936.
[21] Melnikov V. K., Integration of the nonlinear Schroedinger equation with a self-consistent source. Commun.Math. Phys., 137 (1991), 359-381.
22] Melnikov V. K., Integration of the Korteweg-de Vries equation with a source. Inverse Problems, 6 (1990), 233-246.
[23] Leon J. and Latifi A., Solution of an initial-boundary value problem for coupled nonlinear waves. J. Phys.A: Math. Gen.,23 (1990), 23 1385-1403.
[24] Claude C., Latifi A., Leon J., 1991, Nonliear resonant scattering and plasma instability: an integrable model, J. Math. Phys., 32 (1991), 3321-3330.
[25] Huang Y., Yao Y., Zeng Y., On Camassa-Holm equation with self-consistent sources and its solutions. Communications in theoretical physics, 53 (2010), 403-412.
[26] Baltaeva I.I., Urazboev G.U., About the Camassa-Holm equation with a self-consistent source, Ufa mathematical journal, 3 (2011), 10-18.
[27] Zeng Y., Ma W. X. and Runliang Lin, Integration of the soliton hierarchy with self-consistent sources, J. Math. Phys., 41 (2000), 5453–5488.
[28] Zeng Y. B., Shao Y.J. and Xue W.M., Negaton and positon solutions of the soliton equation with self-consistent sources, J. Phys. A: Math. Gen., 36 (2003), 5035–5043.
[29] Zhang D. J. and Chen D. Y., The N-soliton solutions of the sine-Gordon equation with self-consistent sources, Physics A, 321 (2003), 467–481.
[30] A. B. Hasanov, Shtrum Liuvill chegaraviy masalalari nazariyasiga kirish. Q.I. [Matn]/ A. B. Hasanov. – Toshkent: «Turon – Iqbol», 2016. – 584 b.
[31] Hasanov A. B. Xill tenglamalari uchun teskari masalalar va ularning taqbiqlari: o‘quv qo‘llanma / A. B. Hasanov. – Toshkent: «TURON – IQBOL», 2015. – 424 b.
[32] Urazboev G. and Babadjanova A., 2019, On the integration of the matrix modified Kortewegde Vries equation with self-consistent source, Tamkang J. Math. 50 (2019), 281–291.
[33] Yakhshimuratov A. B., The nonlinear Schrodinger equation with a self-consistent source in the class of periodic functions, Math. Phys., Anal. and Geom. 14 (2011), 153–169.
[34] Yakhshimuratov A. B. and Babajanov B. A., Integration of equation of Kaup system kind with a self-consistent source in the class of periodic functions, Ufa Math. J. 12 (2020), 104–114.
[35] Khasanov A. B. and Yakhshimuratov A. B., 2010, The Korteweg-de Vries equation with a self-consistent source in the class of periodic functions, Theor. Math. Phys. 164 (2010), 1008–1015.
[36] Babajanov B. A., Fechkan M., and Urazbaev G., On the periodic Toda lattice with selfconsistent source, Commun. Nonlinear Sci. Numer. Simul. 22 (2015), 379–388.
[37] Babajanov B. A., Fechkan M. and Urazbaev G., On the periodic Toda lattice hierarchy with an integral source, Comm. Nonlinear Sci. Numer. Simul. 52 (2017), 110–123.
[38] Babajanov B. A. and Khasanov A. B., Periodic Toda chain with an integral source, Theoret. Math. Phys. 184 (2015), 1114–1128.
[39] Yakhshimuratov A., Kriecherbauer T., Babajanov B., On the construction and integra- tion of a hierarchy for the Kaup system with a self-consistent source in the class of periodic functions, Journal of Mathematical Physics, Analysis, Geometry, 17 (2021), 233-257. [40] Constantin A. and Mckean H. P., A shallow water equation on the circle, Comm.Pure. Appl.Math., 52 (1999), 949–982.
[40] Constantin A. and Mckean H. P., A shallow water equation on the circle, Comm.Pure. Appl.Math., 52 (1999), 949–982.
[41] Constantin A., 1997, On the spectral problem for the periodic Camassa-Holm equation, J. Math. Anal. Appl., 210 (1997), 215–230.
[42] Constantin A., 1997, A general-weighted Sturm-Liouville problem, Ann. Scuola Norm. Sup. Pisa, 24 (1997), 767–782.
[43] Constantin A, 1998, On the inverse spectral problem for the Camassa-Holm equation, J. Funct. Anal., 155 352–363.
[44] www.ijsr.net
[45] www.math-net.ru
[46] www.ziyonet.uz


Download 480.4 Kb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8   9




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling