Pedagogika kafedrasi matematik tassavurlarni shakllantirish nazariyasi va texnologiyasi
I.2. OLIMNING ASARLARIDA MATEMATIKANING TUTGAN O‘RNI. UNING GEOMETRIYA, ARIFMETIKA VA ASTRONOMIYAGA DOIR ISHLARI
Download 69.04 Kb.
|
Shuhratjonova Zebo MT kurs ishi (3)
I.2. OLIMNING ASARLARIDA MATEMATIKANING TUTGAN O‘RNI. UNING GEOMETRIYA, ARIFMETIKA VA ASTRONOMIYAGA DOIR ISHLARI
Ibn Sinoning uchta kitobi – “Kitob an-najot”, “Donishnoma” va asosan, “Kitob ash-shifo”ga kvadriviumning uch sohasi: geometriya, arifmetika va astronomiyaga oid izlanishlari kiritilgan. Ana shu uchta to‘plamga nazariy astronomiya va bizning davrimizgacha yetib kelmagan amaliy astronomiyaga oid tadqiqotlarini qo‘shish mumkin. Geometriyada Ibn Sino dastlab burchak tushunchasi haqida “Risola fi-z-zaviyya” (“Burchak haqida risola”)ni yozgan. Ammo bizgacha yetib kelmagani yoki hali topilmagani bois bu risolaning mazmunidan bexabarmiz. Ikkinchi ishida: “Fakt haqidagi qisqacha bayon shundan iboratki, burchak aylana va urinma (egri chiziqning biror nuqtasiga tegib o‘tgan to‘g‘ri chiziq) orasida qiymatga ega bo‘la olmaydi”, deb yozgan. Bu qarash antik yunon olimlariga yaxshi tanish bo‘lgan. Yevklid “Negizlar”ning III kitobida uni aniqlagan. Undan so‘ng bu fikrni Proklus o‘rtaga tashlagan (mil. avv. V asr). Ibn Sinoning mazkur fikrini olimlar, xususan, Ibn al-Xaysam (1039-y.) keyinchalik “Negizlar”ning arabcha sharhi deb qaradilar. Aylana va to‘g‘ri chiziqning urinishidan nima hosil bo‘lishi faqat matematiklarni emas, qadimgi yunon faylasuflarini ham qiziqtirgan, Aristotel boshchiligida uning ahamiyati muhokama qilingani Ibn Sinoni bu masalaga qaytishga undagan bo‘lsa kerak. Astronomiya sohasida Ibn Sino asarlari ro‘yxati yanada uzun. Ular o‘z ichiga quyidagilarni oladi: “Kitob al-arsal al-kulliya” (“Umumiy kuzatuvlar kitobi”), “Maqola fi xavass xatt al-istiva” (“Gorizont xususiyati sharhi”), “Maqola fi l-ajram as-samaviya” (“Osmon jismlari sharhi”), “Maqola fi kayfiya ar-rasd va tatabuquhu ma’a al-ilm at-tab’ii” (“Kuzatish usullari va uning fizika bilan muvofiqligi sharhi”) “Risolat fi ala rasadiyya” (“Kuzatish vositalari haqida risola”), “Maqola fi hay’at al-ard fi s-sama’ va kavniha fi l-vasat” (“Yerning osmondagi sayyoralar markazi ekani haqidagi fakt sharhi”), “Kitob qiyam al-ard fi vasati s-sama’” (“Yerning osmon ostidagi holati sharhi”). Ana shu ro‘yxatga “Kitob al-lavahid” (“Izohlar kitobi”)ni ham qo‘shish mumkin. “Donishnoma” Ibn Sino matematikaga oid fors tilida yozgan yagona asar, uni Juzjoniy arab tiliga o‘girgan. Kitobning matematikaga oid qismi “Kitob an-najot”ning shu qismiga mos keladi. Bu yerda bayon etilgan geometriya va astronomiyaga oid aniqlangan teoremalar Ptolemeyning “Almagest” asari mazmunini to‘g‘ri tushunishga tayyorlanish uchun o‘ylab topilgan. Qolgan fasllar musiqa ilmini nazariy o‘rganish nuqtayi nazaridan tayanch arifmetik bilimlarni birlashtiradi. “Donishnoma”ning geometriyaga oid qismi Yevklidning “Negizlar”i xulosasi emas. U “Negizlar”dan bayon etilgan teoremalar soni bilan farq qiladi. Ibn Sino dastlab tekislikdagi to‘g‘ri chiziq va oraliq masofaning o‘ziga xos jihatini aytadi, keyin esa burchak, ko‘pburchak va aylananing xossasini bayon qiladi. Ikkinchi qismida u astronomik farazlarni aniqlash uchun nisbiy tushunchani (matematik vositalarni geometriya va oliy astronomiyada qo‘llashni afzal biladi) taqdim etadi. Juzjoniyning e’tiroficha, “Donishnoma”ning matematikaga doir yana bir qismi faqat “Shifo”ning arifmetikaga oid qismiga izohlardan iborat. Dastlab “Shifo”da materiallarning qanday tartibda joylashganini aniqlashtirib olgan ma’qul. Birinchi mantiq, keyin fizika, undan so‘ng matematika, oxirgi o‘rinda metafizika. Ana shu turli predmetlarning xronologik tartibda joylashishi asar mazmuniga muvofiq emas. Chunki kitobning matematikaga oid fasli birinchi bo‘lib shakllantirilgan. Aniqrog‘i, Juzjoniy Ibn Sino bilan 1012-yil uchrashgan. O‘sha vaqtga qadar asar loyihasiga tartib berilgan, matematika fasli esa falsafiy to‘plamning boshida bo‘lgan. “Shifo”da hajm jihatidan matematika fasli kattaroq o‘rin egallagan. Boz ustiga uning falsafa to‘plamida mavjudligi o‘z-o‘zidan muhim ahamiyat kasb etadi. Olimning yoshlik yillarida yozilgan bu asar talabalarga hamda mutaxassislarga qo‘llanma sifatida alohida e’lon qilingan bo‘lishi ham mumkin. Ungacha yashab o‘tgan va unga zamondosh bo‘lgan ayrim matematiklar aynan shu usulni qo‘llagan. Shuningdek, u arab falsafasi an’analarida matematik matndan foydalangan birinchi olim emas. Uning nufuzli salaflari al-Kindiy va al-Forobiy matematik mavzudagi har bir ishini o‘z vaqtida e’lon qilib borgan. Ammo Ibn Sino, bizning bilishimizcha, matematikani falsafa to‘plamiga joylagan birinchi muallif hisoblanadi. Fikrimizcha, u bundan ikkita maqsadni ko‘zda tutgan. Birinchi navbatda kelajakda talabalarga falsafadan zarur bo‘ladi, degan niyatda o‘zi aniq ifodalagan ilmiy to‘plamga tartib berishni o‘ylagan. Ikkinchidan, u ana shu matnning falsafaga doir qismi falsafa fanining ajralmas qismi ekanini tasdiqlashni ko‘zlagan. Geometriya “Shifo” kitobining matematikaga oid qismining beshdan ikkisini band qilgan. Asarning to‘liq nashri qisqa bayoni bilan birgalikda o‘n besh kitobdan tashkil topgan. Uning ikkitasi Yevklid tartib bergan va Gipsikl ikki kitob qilib ko‘chirgan “Negizlar”ning arabcha naqli ekani inobatga olinsa, o‘n uchta kitob qoladi. “Shifo” fan tarixi mutaxassislari va faylasuflarni ikki jihati bilan o‘ziga jalb qilib keladi: – “Shifo”ning Markaziy Osiyoning intellektual markazida muvaffaqiyat qozonib, musulmon olamining boshqa hududlariga ham, hatto tashqi o‘lkalarga ham yoyilib ketgani; – manbasi Sharq geometriyasi an’analariga taalluqli qisqacha ifoda ekani. Birinchi qiyosiy tahlil va uning mazmuni, xususan, qo‘llangan atamalar Yevklid “Negizlar”iga doir qimmatli ma’lumot beradi. “Shifo”ning arifmetikaga oid qismi matematik to‘plamning besh foizdan kamrog‘ini tashkil qiladi. U risola to‘plam shaklida bo‘lib, ta’rif va natijalar to‘rtta faslga joylangan. Birinchisi, “sonlarning xossalari” haqida (jumladan, ayrim butun sonlarning tadrijiyligi va umumlashtirilgan ifodasi); ikkinchisi, “o‘zaro munosabatdagi sonlarning holati” (butun sonlarning tadrijiyligidan kelib chiqqan holda jadvaldan o‘rin olgan turli formalar); uchinchisi, “sonlarning holati birdan boshlab tashkil topishi” (sonning xossasi, ko‘plab nuqtalar taklif qilinadi) va oxirgisi “o‘nlab tadrijiylik haqida” (bu musiqaga taalluqli). Arifmetikani o‘qish ikkita mulohaza tug‘diradi: – bu Ibn Sino faylasuf sifatida namoyon bo‘ladigan yagona matematik qismdir. – Ibn Sino bayon qilgan ko‘plab ta’rif va natijalarning kelib chiqishini Yevklid “Negizlar”ining VII, VIII va IX kitoblari hamda Nikomaxning “Arifmetikaga kirish” asaridan qidirish kerak. Xulosa shuki, “Shifo”ning sof matematikaga doir qismi bizgacha yetib kelgan arab manbalaridagi kabi emas, u mazmunan turli geometrik fasllar va sonlar nazariyalaridan uzoq. Ehtimol, aynan shu sababga ko‘ra u “Shifo”da o‘sha davrda ilmiy faoliyat yuritish uchun muqarrar bo‘lgan ikkita fanni: hisob ilmi va algebrani sharhlamagan (qolaversa, uning boshqa mashhur asarlarida ham xuddi shunday yo‘l tutilgan). “Shifo”ning astronomiya qismi (asar Jurjonda 1012–14-yillarda yozilgan va 1023-yilda qayta ko‘rib chiqilgan) Ptolemeyning “Almagest” asarining sharhidir. Astronomiyaga oid ishlarida Ibn Sino zamondosh olimlar va shaxsiy kuzatuvlari hamda hisoblaridan foydalanadi, olingan natijalarni Ptolemey va Ma’mun zamoni olimlari ishlari bilan qiyoslaydi. Kuzatuvlari natijasida u astronomik va matematik asoslar bir-biriga unchalik muvofiq kelmaydi, degan xulosaga keladi va “Shifo”da falsafiy dalil-isbotlarini fizikaga yo‘naltiradi. Asarning birinchi kitobi “Almagest”ga sharh yozilgan “Sferik shakldagi dastlabki muzokaralar” deb nomlangan, o‘n birinchi faslda Ibn Sino fikrini ifodalashda katta aniqlikka erishgan. Biroq “Shifo”ning astronomiya bo‘limi so‘ngidagi “Bu bob “Almagest”ga sharh emas, bu bobda boradigan gap “Almagest”da yo‘q” degan faslda Ibn Sino o‘zini yangi sferik trigonometriya usullarini o‘zlashtirgan, va ayniqsa, o‘z davridagi ilmlarni puxta egallagan astronomiya mutaxassisidek tutadi. Sayyoralar harakatini sharhlaydigan bu ilova va bu harakatning kuzatishlar natijalariga mos kelishi yoki kelmasligi Ibn Sinoni Sharq matematik astronomiyasining o‘ta muhim muammosi bo‘lmish sinus teoremasini ilgari surishga undaydi. Shundan so‘ng Ibn Sino o‘sha vaqtga qadar taniqli bo‘lgan, musulmon o‘lkalarida amalda qo‘llangan, chunonchi, al-Beruniy “Maqalid ilm al-haya” (“Astronomiya asoslari”) asarida ta’lif etgan mashhur teoremadan farqli jihatlari yuzasidan o‘zi topgan dalillarni keltiradi. Ibn Sinoning matematikaga oid asarlaridan birinchi bo‘lib uning yaqin shogirdi Juzjoniy foydalangan. U “Almagest”ni puxta o‘rgangan, “Kitob an-najot”ning matematikaga doir qismini forschaga o‘girgan, keyin “Shifo”ning arifmetikasini “Donishnoma”ga kiritish uchun unga qisqacha sharh yozgan. XIV asrda qomusiy va matematik olim Ibn al-Akfaoniy “Shifo” arifmetikasini sonlar nazariyasini o‘rganish borasida muhim qo‘llanma sifatida tavsiya qilgan. Musulmon olami va Yevropada “Shifo”ning tez tarqalishi va ilmiy doiralarda uning matematikaga oid faslidan keng foydalanilishining sababini uchta misol bilan izohlash mumkin. XIII asr so‘ngida ibn al-Banna al-Muroqashiy Yevklidning sonlarga bergan ta’rifi bilan bahsga kirishar ekan, Ibn Sino “Metafizika”sidan va unga Faxriddin ar-Roziy yozgan qisqa sharhdan katta-katta ko‘chirmalar keltiradi. Ikkinchi misolga mag‘riblik matematik ibn Haydar (1413) misol bo‘ladi. U sinus teoremasi haqida so‘z yuritar ekan, Ibn Sino asarining “Almagest”ning qisqa sharhi bo‘lgan oxirgi faslini yodga oladi. Oxirgi misol O‘rta asrlar Yevropasiga taalluqli. Yaqinda “Shifo”dagi arifmetika ivrit (qadimgi yahudiy) tiliga tarjima qilingani ma’lum bo‘ldi. Geometriya esa ivrit tiliga qadim yahudiy transkripsiyasi bilan bir necha bor o‘girilgan. Bu Ibn Sino asarlari matematikadan dars berishga mo‘ljallab yozilganidan guvohlik beradi. Download 69.04 Kb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling