Получение ферровольфрама из вольфрамитового концентрата алюминотермическим способом


Алюминотермическое восстановление оксидов металлов. Характеристики алюминотермического процесса


Download 1.63 Mb.
bet3/12
Sana20.03.2023
Hajmi1.63 Mb.
#1285058
TuriДиплом
1   2   3   4   5   6   7   8   9   ...   12
Bog'liq
диплом

1.3 Алюминотермическое восстановление оксидов металлов. Характеристики алюминотермического процесса.
Одним из важнейших технико-экономических показателей промышленных алюминотермических процессов является извлечение восстанавливаемого металла из концентратов. Физико-химические факторы, от которых зависит степень извлечения металлов из оксидов: скорость плавления шихты, температурные условия плавки, полнота протекания диффузионных процессов.
Вероятная полнота протекания процесса и принципиальная возможность его осуществления определяются, в первую очередь, термодинамическими характеристиками взаимодействия оксидов металлов с алюминием [11].
Общий вид уравнения взаимодействия оксидов с алюминием (1):


2/m MenOm + 4/3 Al = 2n/m Me + 2/3 Al2O3 (1)

Самопроизвольное протекание этой реакции возможно при условии –высокая термодинамическая прочность оксидов алюминия по сравнению с оксидами восстанавливаемых металлов [12]. Прочность оксидов различных металлов можно охарактеризовать величиной изобарного потенциала ∆G0, имеющего места при взаимодействии этих металлов с кислородом.


При проведении алюминотермического процесса рассчитывают изобарно-изотермический потенциал. Данный расчет сводится к анализу термодинамических равновесий в системе металл - неорганическое вещество. Как известно, любой химический процесс сопровождается изменением энергии системы. Оно равно максимальной работе, которая производится этой системой или совершается над системой в течение процесса [13].
Необходимые расчеты проводят используя стандартные величины по обобщенному уравнению как первого, так и второго закона термодинамики (уравнение Гиббса-Гельмгольца) (2):

G = ∆H - Τ∆S, (2)


где ∆Gэнергия Гиббса;
Η – полная энергия системы;
Т∆S – связанная энергия (при Р = const).
Все подсчеты по таблицам стандартных величин проведены учитывая свойства аддитивности ∆G, ∆Н и ∆S [12].
Также имеются расчетные данные температурной зависимости энергии Гиббса для каждой реакции, в ходе которых образуются различные вещества. К примеру, для некоторых оксидов конденсированной и газовой фаз построены диаграммы ∆G 0 – Т [14], позволяющие довольно быстро оценить, какой металл способен восстанавливать другой металл из соответствующего оксидного соединения [15,16,17].
На рисунке 1 можно наблюдать совместное восстановление многокомпонентных систем. При этом наибольший энергетический вклад в систему вносят триоксид железа (1), триоксид вольфрама (2), триоксид марганца (3). Эти оксиды будут восстанавливаться первыми при рассмотрении температурного интервала. Оксиды MnO и SiO2 восстанавливаются наиболее трудно.
В ходе производства ферросплавов при восстановлении для сдвига равновесия реакций вправо необходимо присутствие трудновосстанавливаемых оксидов растворителя – железа по следующим перечисленным причинам [19]:
- в системе создается более приятные энергетические условия (уменьшается общее значение ΔG0 ), так как оксиды железа восстанавливаются наиболее легче большинства других оксидов;
- железо растворяет восстановленные элементы, при этом понижает их активность, что приводит к смещению равновесия в сторону восстановления в соответствии с констатацией равновесия реакций;
- железо препятствует протеканию вторичных реакций (окислению), а также испарению элементов;
- железо понижает температуру плавления металлической фазы, а также позволяет вести плавку при более низкой температуре.

1 – 2/3 Fe2O3 + 4/3 Al = 4/3 Fe + 2/3 Al2O3;
2 – 2/3 WO3 + 4/3 Al = 2/3 W + 2/3 Al2O3;
3 – 2/3 Mn2O3 + 4/3 Al = 4/3 Mn + 2/3 Al2O3;
4 – 2 FeO + 4/3 Al = 2 Fe + 2/3 Al2O3;
5 – 2 MnO + 4/3 Al = 2 Fe+ 2/3 Al2O3;
6 – SiO2 + 4/3 Al2O3 = Si + 2/3 Al2O3.

Рисунок 1 – Температурная зависимость изменения изобарного потенциала реакций, протекающих в ходе алюминотермического восстановления оксидов [18]


Проводя термодинамический анализ реакций одновременного алюминотермического восстановления двух или нескольких оксидов необходимо учитывать величину концентраций веществ в металлической фазе. Для того, чтобы оценить влияние концентрации на восстанавливаемость оксида используют реакцию диссоциации оксидов [18]:





Download 1.63 Mb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8   9   ...   12




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling