Recent insights into polysaccharide-based hydrogels and their potential applications in food sector: a review
Download 1.62 Mb. Pdf ko'rish
|
1-s2.0-S014181302201248X-main
A. Manzoor et al.
International Journal of Biological Macromolecules 213 (2022) 987–1006 1003 [57] J. Fu, F. Yang, Z. Guo, The chitosan hydrogels: From structure to function, New J. Chem. 42 (21) (2018) 17162–17180 . [58] A. Travan, F. Scognamiglio, M. Borgogna, E. Marsich, I. Donati, L. Tarusha, S. Paoletti, Hyaluronan delivery by polymer demixing in polysaccharide-based hydrogels and membranes for biomedical applications, Carbohydr. Polym. 150 (2016) 408–418 . [59] A.D. Augst, H.J. Kong, D.J. Mooney, Alginate hydrogels as biomaterials, Macromol. Biosci. 6 (8) (2006) 623–633 . [60] R. Gheorghita Puscaselu, A. Lobiuc, M. Dimian, M. Covasa, Alginate: From food industry to biomedical applications and management of metabolic disorders, Polymers 12 (10) (2020) 2417 . [61] M.I. Neves, L. Moroni, C.C. Barrias, Modulating alginate hydrogels for improved biological performance as cellular 3D microenvironments, Front. Bioeng. Biotechnol. 8 (2020) 665 . [62] C. Hu, W. Lu, A. Mata, K. Nishinari, Y. Fang, Ions-induced gelation of alginate: Mechanisms and applications, Int. J. Biol. Macromol. 177 (2021) 578–588 . [63] M.T. Cook, G. Tzortzis, D. Charalampopoulos, V.V. Khutoryanskiy, Production and evaluation of dry alginate-chitosan microcapsules as an enteric delivery vehicle for probiotic bacteria, Biomacromolecules 12 (7) (2011) 2834–2840 . [64] S. Nualkaekul, D. Lenton, M.T. Cook, V.V. Khutoryanskiy, D. Charalampopoulos, Chitosan coated alginate beads for the survival of microencapsulated Lactobacillus plantarum in pomegranate juice, Carbohydr. Polym. 90 (3) (2012) 1281–1287 . [65] S. Bashir, M. Hina, J. Iqbal, A.H. Rajpar, M.A. Mujtaba, N.A. Alghamdi, S. Ramesh, Fundamental concepts of hydrogels: synthesis, properties, and their applications, Polymers 12 (11) (2020) 2702 . [66] J. Hu, T. Kurokawa, T. Nakajima, Z.L. Wu, S.M. Liang, J.P. Gong, Fracture process of microgel-reinforced hydrogels under uniaxial tension, Macromolecules 47 (11) (2014) 3587–3594 . [67] C. Elvira, J.F. Mano, J. San Roman, R.L. Reis, Starch-based biodegradable hydrogels with potential biomedical applications as drug delivery systems, Biomaterials 23 (9) (2002) 1955–1966 . [68] C. Schmitt, S.L. Turgeon, Protein/polysaccharide complexes and coacervates in food systems, Adv. Colloid Interf. Sci. 167 (1–2) (2011) 63–70 . [69] C. Lara-Espinoza, E. Carvajal-Mill´an, R. Balandr´an-Quintana, Y. L´opez-Franco, A. Rasc´on-Chu, Pectin and pectin-based composite materials: beyond food texture, Molecules 23 (4) (2018) 942 . [70] C.M. Freitas, J.S. Coimbra, V.G. Souza, R.C. Sousa, Structure and applications of pectin in food, biomedical, and pharmaceutical industry: a review, Coatings 11 (8) (2021) . [71] S.P. Ishwarya, P. Nisha, Advances and prospects in the food applications of pectin hydrogels, Crit. Rev. Food Sci. Nutr. (2021) 1–25 . [72] S.P. Ishwarya, P. Nisha, Advances and prospects in the food applications of pectin hydrogels, Crit. Rev. Food Sci. Nutr. 1–25 (2021) . [73] H. Liu, X.M. Xu, S.D. Guo, Rheological, texture and sensory properties of low-fat mayonnaise with different fat mimetics, LWT Food Sci. Technol. 40 (6) (2007) 946–954 . [74] B.C. Wu, B. Degner, D.J. McClements, Soft matter strategies for controlling food texture: formation of hydrogel particles by biopolymer complex coacervation, J. Phys. Condens. Matter. 26 (46) (2014), 464104 . [75] F.P. Francis, R. Chidambaram, Hybrid hydrogel dispersed low fat and heat resistant chocolate, J. Food Eng. 256 (2019) 9–17 . [76] J. Lim, S. Ko, S. Lee, Use of Yuja (Citrus junos) pectin as a fat replacer in baked foods, Food Sci. Biotechnol. 23 (6) (2014) 1837–1841 . [77] M.T. Cook, D. Charalampopoulos, V.V. Khutoryanskiy, Hydrogels in Cell-based Therapies, 1st ed., Royal Society of Chemistry, London, UK, 2014 . [78] K. Pollock, G. Yu, R. Moller-Trane, M. Koran, P.I. Dosa, D.H. McKenna, A. Hubel, Combinations of osmolytes, including monosaccharides, disaccharides, and sugar alcohols act in concert during cryopreservation to improve mesenchymal stromal cell survival, Tissue Eng. Part C Methods 22 (11) (2016) 999–1008 . [79] K. Pycia, D. Gałkowska, L. Juszczak, T. Fortuna, T. Witczak, Physicochemical, thermal and rheological properties of starches isolated from malting barley varieties, J. Food Sci. Technol. 52 (8) (2015) 4797–4807 . [80] C.A. García-Gonz´alez, M. Alnaief, I. Smirnova, Polysaccharide-based aerogels—promising biodegradable carriers for drug delivery systems, Carbohydr. Polym. 86 (4) (2011) 1425–1438 . [81] L. Liu, T. Ye, The spindle of remaining lifetime predicted in the failure machine tool, Ferroelectr. 523 (1) (2018) 167–176 . [82] A. Roy, J. Bajpai, A.K. Bajpai, Dynamics of controlled release of chlorpyrifos from swelling and eroding biopolymeric microspheres of calcium alginate and starch, Carbohydr. Polym. 76 (2) (2009) 222–231 . [83] M.R. Guilherme, F.A. Aouada, A.R. Fajardo, A.F. Martins, A.T. Paulino, M.F. Davi, E.C. Muniz, Superabsorbent hydrogels based on polysaccharides for application in agriculture as soil conditioner and nutrient carrier: a review, Eur. Polym. J. 72 (2015) 365–385 . [84] B.S. Kaith, R. Jindal, M. Kumari, M. Kaur, Biodegradable-stimuli sensitive xanthan gum-based hydrogel: evaluation of antibacterial activity and controlled agro-chemical release, React. Funct. Polym. 120 (2017) 1–13 . [85] M. Hajikhani, M.M. Khanghahi, M. Shahrousvand, J. Mohammadi-Rovshandeh, A. Babaei, S.M.H. Khademi, Intelligent superabsorbents based on a xanthan gum/ poly (acrylic acid) semi-interpenetrating polymer network for application in drug delivery systems, Int. J. Biol. Macromol. 139 (2019) 509–520 . [86] D.H. Hanna, G.R. Saad, Encapsulation of ciprofloxacin within modified xanthan gum-chitosan based hydrogel for drug delivery, Bioorg. Chem. 84 (2019) 115–124 . [87] R. Balasubramanian, S.S. Kim, J. Lee, Novel synergistic transparent k- carrageenan/xanthan gum/gellan gum hydrogel film: mechanical, thermal and water barrier properties, Int. J. Biol. Macromol. 118 (2018) 561–568 . [88] M.H.A. Elella, E.S. Goda, M.A. Gab-Allah, S.E. Hong, B. Pandit, S. Lee, K.R. Yoon, Xanthan gum-derived materials for applications in environment and eco-friendly materials: a review, J. Environ. Chem. Eng. 9 (1) (2021), 104702 . [89] S. Khunmanee, Y. Jeong, H. Park, Crosslinking method of hyaluronic-based hydrogel for biomedical applications, J. Tissue Eng. 8 (2017), 2041731417726464 . [90] X. Xu, Y. Weng, L. Xu, H. Chen, Sustained release of Avastin® from polysaccharides cross-linked hydrogels for ocular drug delivery, Int. J. Biol. Macromol. 60 (2013) 272–276 . [91] H. Chen, J. Cheng, L. Ran, K. Yu, B. Lu, G. Lan, F. Lu, An injectable self-healing hydrogel with adhesive and antibacterial properties effectively promotes wound healing, Carbohydr. Polym. 201 (2018) 522–531 . [92] J. Zhu, F. Li, X. Wang, J. Yu, D. Wu, Hyaluronic acid and polyethylene glycol hybrid hydrogel encapsulating nanogel with hemostasis and sustainable antibacterial property for wound healing, ACS Appl. Mater. Interfaces 10 (16) (2018) 13304–13316 . [93] P. Chuysinuan, T. Thanyacharoen, K. Thongchai, S. Techasakul, S. Ummartyotin, Preparation of chitosan/hydrolyzed collagen/hyaluronic acid based hydrogel composite with caffeic acid addition, Int. J. Biol. Macromol. 162 (2020) 1937–1943 . [94] S. Trombino, C. Servidio, F. Curcio, R. Cassano, Strategies for hyaluronic acid- based hydrogel design in drug delivery, Pharmaceutics 11 (8) (2019) 407 . [95] S.S. Kwon, B.J. Kong, S.N. Park, Physicochemical properties of pH-sensitive hydrogels based on hydroxyethyl cellulose–hyaluronic acid and for applications as transdermal delivery systems for skin lesions, Eur. J. Pharm. Biopharm. 92 (2015) 146–154 . [96] W. Wei, X. Hu, X. Qi, H. Yu, Y. Liu, J. Li, W. Dong, A novel thermo-responsive hydrogel based on salecan and poly (N-isopropylacrylamide): synthesis and characterization, Colloids Surf. B: Biointerfaces 125 (2015) 1–11 . [97] X. Qi, X. Hu, W. Wei, H. Yu, J. Li, J. Zhang, W. Dong, Investigation of Salecan/ poly (vinyl alcohol) hydrogels prepared by freeze/thaw method, Carbohydr. Polym. 118 (2015) 60–69 . [98] X. Qi, Y. Yuan, J. Zhang, J.W. Bulte, W. Dong, Oral administration of salecan- based hydrogels for controlled insulin delivery, J. Agric. Food Chem. 66 (40) (2018) 10479–10489 . [99] X. Hu, Y. Wang, L. Zhang, M. Xu, Formation of self-assembled polyelectrolyte complex hydrogel derived from salecan and chitosan for sustained release of Vitamin C, Carbohydr. Polym. 234 (2020), 115920 . [100] H. Zhang, F. Zhang, R. Yuan, Applications of natural polymer-based hydrogels in the food industry, in: Hydrogels Based on Natural Polymer, Elsevier, 2020, pp. 357–410 . [101] M.S. Kuo, A.J. Mort, A. Dell, Identification and location of l-glycerate, an unusual acyl substituent in gellan gum, Carbohydr. Res. 156 (1986), 173187 . [102] P.A. Williams, G.O. Phillips, Introduction to food hydrocolloids, in: Handbook of Hydrocolloids, Woodhead Publishing, 2021, pp. 3–26 . [103] E.R. Morris, K. Nishinari, M. Rinaudo, Gelation of gellan—a review, Food Hydrocoll. 28 (2) (2012), 373411 . [104] R.C. Valli, F.J. Miskiel, S.S. Cho, M.L. Dreher, Gellan gum, Food Stab. Thick. Gelling Agents 20 (2001) . [105] K. Nishinari, P.A. Williams, G.O. Phillips, Review of the physico-chemical characteristics and properties of konjac mannan, Food Hydrocoll. 6 (2) (1992), 199222 . [106] N. Sugiyama, H. Shimahara, T. Andoh, M. Takemoto, T. Kamata, Molecular weights of konjac mannans of various sources, Agric. Biol. Chem. 36 (8) (1972) 13811387 . [107] H. Zhang, M. Yoshimura, K. Nishinari, M.A.K. Williams, T.J. Foster, I.T. Norton, Gelation behaviour of konjac glucomannan with different molecular weights, Biopolymers 59 (1) (2001) 3850 . [108] V.J. Ryan, C.R. Yuan, G.A. Crosby, Methods for lowering viscosity of glucomannan compositions, uses and compositions, US Patent 6,733,769 B1, 2004. [109] M. McIntosh, B.A. Stone, V.A. Stanisich, Curdlan and other bacterial (1–3)-β-D- glucans, Appl. Microbiol. Biotechnol. 68 (2) (2005), 163173 . [110] Z. Cai, H. Zhang, Recent progress on curdlan provided by functionalization strategies, Food Hydrocoll. 68 (2017), 128135 . [111] R.H. Marchessault, Y. Deslandes, K. Ogawa, P.R. Sundararajan, X-ray diffraction data for β-(1–3)-D-glucan, Can. J. Chem. 55 (2) (1977), 300303 . [112] K. Nishinari, H. Zhang, Recent advances in the understanding of heat set gelling polysaccharides, Trends Food Sci. Technol. 15 (6) (2004), 305312 . [113] H.B. Zhang, K. Nishinari, M.A.K. Williams, T.J. Foster, I.T. Norton, A molecular description of the gelation mechanism of curdlan, Int. J. Biol. Macromol. 30 (1) (2002) 716 . [114] F. Bisotti, F. Pizzetti, G. Storti, F. Rossi, Mathematical Modeling of Crosslinked Polyacrylic Based Hydrogels: Physical Properties and Drug Delivery, 2021 . [115] W.E. Hennink, C. Nostrum, Department of Pharmaceutics, Utrecht University, Adv. Drug Deliv. Rev. 54 (2002) 13–36 . [116] H. Park, K. Park, W.S. Shalaby, Biodegradable Hydrogels for Drug Delivery, CRC Press, 1993 . [117] H. Tsuji, Poly (lactide) stereocomplexes: formation, structure, properties, degradation, and applications, Macromol. Biosci. 7 (2005) 569–597 . [118] D.W. Lim, D.L. Nettles, L.A. Setton, A. Chilkoti, Rapid cross-linking of elastin-like polypeptides with (hydroxymethyl) phosphines in aqueous solution, Biomacromolecules 8 (5) (2007) 1463–1470 . Download 1.62 Mb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling