Recent insights into polysaccharide-based hydrogels and their potential applications in food sector: a review
Download 1.62 Mb. Pdf ko'rish
|
1-s2.0-S014181302201248X-main
A. Manzoor et al.
International Journal of Biological Macromolecules 213 (2022) 987–1006 1004 [119] F. Yokoyama, I. Masada, K. Shimamura, T. Ikawa, K. Monobe, Morphology and structure of highly elastic poly (vinyl alcohol) hydrogel prepared by repeated freezing-and-melting, Colloid Polym. Sci. 264 (7) (1986) 595–601 . [120] K. Nishinari, H. Zhang, S. Ikeda, Hydrocolloid gels of polysaccharides and proteins, Curr. Opin. Colloid Interface Sci. 5 (3–4) (2000) 195–201 . [121] P.J. Strong, H. Claus, Laccase: a review of its past and its future in bioremediation, Crit. Rev. Environ. Sci. Technol. 41 (4) (2011) 373–434 . [122] M.U. Minhas, M. Ahmad, L. Ali, M. Sohail, Synthesis of chemically cross-linked polyvinyl alcohol-co-poly (methacrylic acid) hydrogels by copolymerization; a potential graft-polymeric carrier for oral delivery of 5-fluorouracil, DARU J. Pharm. Sci. 21 (1) (2013) 1–9 . [123] M. Bustamante-Torres, D. Romero-Fierro, B. Arcentales-Vera, K. Palomino, H. Maga˜na, E. Bucio, Hydrogels classification according to the physical or chemical interactions and as stimuli-sensitive materials, Gels 7 (4) (2021) 182 . [124] G. Giammona, G. Pitarresi, G. Cavallaro, G. Spadaro, New biodegradable hydrogels based on an acryloylated polyaspartamide cross-linked by gamma irradiation, J. Biomater. Sci. Polym. Ed. 10 (9) (1999) 969–987 . [125] J.J. Sperinde, L.G. Griffith, Synthesis and characterization of enzymatically-cross- linked poly (ethylene glycol) hydrogels, Macromolecules 30 (18) (1997) 5255–5264 . [126] H. Tan, C.R. Chu, K.A. Payne, K.G. Marra, Injectable in situ forming biodegradable chitosan–hyaluronic acid based hydrogels for cartilage tissue engineering, Biomaterials 30 (13) (2009) 2499–2506 . [127] P. Martens, K.S. Anseth, Characterization of hydrogels formed from acrylate modified poly (vinyl alcohol) macromers, Polymer 41 (21) (2000) 7715–7722 . [128] S. Nam, K.H. Hu, M.J. Butte, O. Chaudhuri, Strain-enhanced stress relaxation impacts nonlinear elasticity in collagen gels, Proc. Natl. Acad. Sci. 113 (20) (2016) 5492–5497 . [129] A.V. Nair, M. Raman, M. Doble, Polysaccharide-based hydrogels for targeted drug delivery, in: Materials for Biomedical Engineering, Elsevier, 2019, pp. 343–382 . [130] S.P. Nagam, A.N. Jyothi, J. Poojitha, S.A.N.T.H.O.S.H. Aruna, R.R. Nadendla, A comprehensive review on hydrogels, Int. J. Curr. Pharm. Res. 8 (1) (2016) 19–23 . [131] C. Naziha, Y. L’Hocine, G. Lukas, L.M. Federico, C. Soumia, F. Silvia, History and applications of hydrogel, J. Biomed. Sci. (2015). ISSN 2254-609X . [132] A. Ali, S. Ahmed, Recent advances in edible polymer-based hydrogels as a sustainable alternative to conventional polymers, J. Agric. Food Chem. 66 (27) (2018) 6940–6967 . [133] Q. Tang, J. Wu, H. Sun, S. Fan, D. Hu, J. Lin, Superabsorbent conducting hydrogel from poly (acrylamide-aniline) with thermo-sensitivity and release properties, Carbohydr. Polym. 73 (3) (2008) 473–481 . [134] S.M.M. Quintero, M. Cremona, A.L.C. Triques, A.R. d'Almeida, A.M.B. Braga, Swelling and morphological properties of poly (vinyl alcohol)(PVA) and poly (acrylic acid)(PAA) hydrogels in solution with high salt concentration, Polymers 51 (4) (2010) 953–958 . [135] F.A. Aouada, M.R.D. Moura, W.T. Lopes da Silva, E.C. Muniz, L.H.C. Mattoso, Preparation and characterization of hydrophilic, spectroscopic, and kinetic properties of hydrogels based on polyacrylamide and methylcellulose polysaccharide, J. Appl. Polym. Sci. 120 (5) (2011) 3004–3013 . [136] G. Kowalski, K. Kijowska, M. Witczak, Ł. Kuterasi´nski, M. Łukasiewicz, Synthesis and effect of structure on swelling properties of hydrogels based on high methylated pectin and acrylic polymers, Polymers 11 (1) (2019) 114 . [137] C. Chang, B. Duan, J. Cai, L. Zhang, Superabsorbent hydrogels based on cellulose for smart swelling and controllable delivery, Eur. Polym. J. 46 (1) (2010) 92–100 . [138] Y. Shi, D. Xiong, Y. Liu, N. Wang, X. Zhao, Swelling, mechanical and friction properties of PVA/PVP hydrogels after swelling in osmotic pressure solution, Mater. Sci. Eng. C. 65 (2016) 172–180 . [139] W.B. Wang, A.Q. Wang, Preparation, swelling and water-retention properties of crosslinked superabsorbent hydrogels based on guar gum, in: Advanced Materials Research, Trans Tech Publications Ltd, 2010, pp. 177–182 . [140] H.M. El-Husseiny, E.A. Mady, L. Hamabe, A. Abugomaa, K. Shimada, T. Yoshida, R. Tanaka, Smart/stimuli-responsive hydrogels: Cutting-edge platforms for tissue engineering and other biomedical applications, Mater. Today Bio 13 (2022), 100186 . [141] T. Begam, A.K. Nagpal, R. Singhal, A comparative study of swelling properties of hydrogels based on poly (acrylamide-co-methyl methacrylate) containing physical and chemical crosslinks, J. Appl. Polym. Sci. 89 (3) (2003) 779–786 . [142] J.S. Temenoff, K.A. Athanasiou, R.G. Lebaron, A.G. Mikos, Effect of poly (ethylene glycol) molecular weight on tensile and swelling properties of oligo (poly (ethylene glycol) fumarate) hydrogels for cartilage tissue engineering, J. Biomed. Mater. Res. 59 (3) (2002) 429–437 . [143] A.A. Oun, J.W. Rhim, Carrageenan-based hydrogels and films: effect of ZnO and CuO nanoparticles on the physical, mechanical, and antimicrobial properties, Food Hydrocoll. 67 (2017) 45–53 . [144] S. Shankar, J.W. Rhim, Tocopherol-mediated synthesis of silver nanoparticles and preparation of antimicrobial PBAT/silver nanoparticles composite films, LWT- Food Sci. Technol. 72 (2016) 149–156 . [145] R. Liu, L. Dai, C. Si, Z. Zeng, Antibacterial and hemostatic hydrogel via nanocomposite from cellulose nanofibers, Carbohydr. Polym. 195 (2018) 63–70 . [146] H. Chen, J. Cheng, L. Ran, K. Yu, B. Lu, G. Lan, F. Lu, An injectable self-healing hydrogel with adhesive and antibacterial properties effectively promotes wound healing, Carbohydr. Polym. 201 (2018) 522–531 . [147] N. Annabi, D. Rana, E.S. Sani, R. Portillo-Lara, J.L. Gifford, M.M. Fares, A. S. Weiss, Engineering a sprayable and elastic hydrogel adhesive with antimicrobial properties for wound healing, Biomaterials 139 (2017) 229–243 . [148] J.R. Padhi, D. Nayak, A. Nanda, P.R. Rauta, S. Ashe, B. Nayak, Development of highly biocompatible gelatin & i-carrageenan based composite hydrogels: in depth physiochemical analysis for biomedical applications, Carbohydr. Polym. 153 (2016) 292–301 . [149] J.W. Rhim, L.F. Wang, Mechanical and water barrier properties of agar/ κ -carrageenan/konjac glucomannan ternary blend biohydrogel films, Carbohydr. Polym. 96 (1) (2013) 71–81 . [150] R. Balasubramanian, S.S. Kim, J. Lee, Novel synergistic transparent k- carrageenan/xanthan gum/gellan gum hydrogel film: Mechanical, thermal and water barrier properties, Int. J. Biol. Macromol. 118 (2018) 561–568 . [151] Q. Yang, S. Fujisawa, T. Saito, A. Isogai, Improvement of mechanical and oxygen barrier properties of cellulose films by controlling drying conditions of regenerated cellulose hydrogels, Cellulose 19 (3) (2012) 695–703 . [152] P. Puligundla, J. Jung, S. Ko, Carbon dioxide sensors for intelligent food packaging applications, Food Control 25 (1) (2012) 328–333 . [153] B. Regubalan, P. Pandit, S. Maiti, G.T. Nadathur, A. Mallick, in: Potential Bio- based Edible Films, Foams, and Hydrogels for Food Packaging in Bio-based Materials for Food Packaging, Springer, Singapore, 2018, pp. 105–123 . [154] N. Roy, N. Saha, T. Kitano, P. Saha, Biodegradation of PVP–CMC hydrogel film: A useful food packaging material, Carbohydr. Polym. 89 (2) (2012) 346–353 . [155] B.B. Anita, A.J. Thatheyus, D. Ramya, Biogradation of carboxymethly cellulose using Aspergillus flavus, Sci. Int. 1 (4) (2013) 85–91 . [156] A. Fern´andez, D. Cava, M.J. Ocio, J.M. Lagar´on, Perspectives for biocatalysts in food packaging, Trends Food Sci. Technol. 19 (4) (2008) 198–206 . [157] H.M. Shewan, J.R. Stokes, Review of techniques to manufacture micro-hydrogel particles for the food industry and their applications, J. Food Eng. 119 (4) (2013) 781–792 . [158] S. Farris, K.M. Schaich, L. Liu, L. Piergiovanni, K.L. Yam, Development of polyion- complex hydrogels as an alternative approach for the production of bio-based polymers for food packaging applications: a review, Trends Food Sci. Technol. 20 (8) (2009) 316–332 . [159] H.M. de Azeredo, Antimicrobial nanostructures in food packaging, Trends Food Sci. Technol. 30 (1) (2013) 56–69 . [160] S. Kalia (Ed.), Polymeric Hydrogels as Smart Biomaterials, Springer, Berlin, Germany, 2016 . [161] L.F. Wang, J.W. Rhim, Preparation and application of agar/alginate/collagen ternary blend functional food packaging films, Int. J. Biol. Macromol. 80 (2015) 460–468 . [162] S.J. Risch, Food packaging history and innovations, J. Agric. Food Chem. 57 (18) (2009) 8089–8092 . [163] A.E. Kapetanakou, S.G. Manios, P.N. Skandamis, Application of edible films and coatings on food, Novel Food Preser. Microb. Assessm. Techniq. (2014) 237 . [164] S. Baek, D. Kim, S.L. Jeon, J. Seo, Preparation and characterization of pH- responsive poly (N, N -dimethyl acrylamide- co -methacryloylsulfadimethoxine) hydrogels for application as food freshness indicators, React. Funct. Polym. 120 (2017) 57–65 . [165] L. Manzocco, M. Anese, S. Calligaris, B. Quarta, M.C. Nicoli, Use of monoglyceride hydrogel for the production of low-fat short dough pastry, Food Chem. 132 (1) (2012) 175–180 . [166] A.L. Incoronato, A. Conte, G.G. Buonocore, M.A. Del Nobile, Agar hydrogel with silver nanoparticles to prolong the shelf life of Fior di Latte cheese, J. Dairy Sci. 94 (4) (2011) 1697–1704 . [167] Y. Liu, R. Wang, D. Wang, Z. Sun, F. Liu, D. Zhang, D. Wang, Development of a food packaging antibacterial hydrogel based on gelatin, chitosan, and 3-phenyl- lactic acid for the shelf-life extension of chilled chicken, Food Hydrocoll. 127 (2022), 107546 . [168] R.T. Heck, E. Salda˜na, J.M. Lorenzo, L.P. Correa, M.B. Fagundes, A.J. Cichoski, P. C.B. Campagnol, Hydrogelled emulsion from chia and linseed oils: a promising strategy to produce low-fat burgers with a healthier lipid profile, Meat Sci. 156 (2019) 174–182 . [169] M. Alejandre, I. Astiasar´an, D. Ansorena, S. Barbut, Using canola oil hydrogels and organogels to reduce saturated animal fat in meat batters, Food Res. Int. 122 (2019) 129–136 . [170] D.J. McClements, E.A. Decker, J. Weiss, Emulsion-based delivery systems for lipophilic bioactive components, J. Food Sci. 72 (8) (2007) R109–R124 . [171] L. Salcedo-Sandoval, S. Cofrades, C. Ruiz-Capillas, A. Matalanis, D.J. McClements, E.A. Decker, F. Jim´enez-Colmenero, Oxidative stability of n-3 fatty acids encapsulated in filled hydrogel particles and of pork meat systems containing them, Food Chem. 184 (2015) 207–213 . [172] A. Matalanis, D.J. McClements, Impact of encapsulation within hydrogel microspheres on lipid digestion: an in vitro study, Food Biophys. 7 (2) (2012) 145–154 . [173] A. Kwan, G. Davidov-Pardo, Controlled release of flavor oil nanoemulsions encapsulated in filled soluble hydrogels, Food Chem. 250 (2018) 46–53 . [174] S. Park, S. Mun, Y.R. Kim, Effect of xanthan gum on lipid digestion and bioaccessibility of β-carotene-loaded rice starch-based filled hydrogels, Food Res. Int. 105 (2018) 440–445 . [175] J. Bechaux, P. Gatellier, J.F. Le Page, Y. Drillet, V. Sante-Lhoutellier, A comprehensive review of bioactive peptides obtained from animal byproducts and their applications, Food Funct. 10 (10) (2019) 6244–6266 . [176] B. Tomadoni, C. Capello, G.A. Valencia, T.J. Guti´errez, Self-assembled proteins for food applications: a review, Trends Food Sci. Technol. 101 (2020) 1–16 . [177] E. Benito-Pe˜na, V. Gonz´alez-Vallejo, A. Rico-Yuste, L. Barbosa-Pereira, J.M. Cruz, A. Bilbao, M.C. Moreno-Bondi, Molecularly imprinted hydrogels as functional active packaging materials, Food Chem. 190 (2016) 487–494 . Download 1.62 Mb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling