Reja: Matritsalar va ular ustida amallar
Matritsalar va ular ustida amallar
Download 0.95 Mb.
|
Matritsalar ustida amallar
- Bu sahifa navigatsiya:
- Matritsalar va ular ustida amallar
- Matritsaning rangi
- Matritsaning rangini topish usullari
Matritsalar va ular ustida amallarπ΅π΄ koβpaytmani topamiz: π΅π΄ = β1 5 β2 β3 3 4 β 4 β5 8 1 3 β1 = (β1) β 4 + 5 β 1 (β2) β 4 + (β3) β 1 3 β 4 + 4 β 1 (β1) β (β5) + 5 β 3 (β2) β (β5) + (β3) β 3 3 β (β5) + 4 β 3 (β1) β 8 + 5 β (β1) (β2) β 8 + (β3) β (β1) 3 β 8 + 4 β (β1) = 1 20 β13 β11 1 β13 16 β3 20 . Shunday qilib, π΄π΅ β π΅π΄ ekan. Matritsalar va ular ustida amallarMisol 2. π΄π΅ va π΅π΄ koβpaytmalarni toping. π΄ = 3 5 1 2 , π΅ = 1 β5 β1 2 . Hisoblaymiz: π΄π΅ = β 3 5 1 β5 1 2 β1 2 = 3 β 1 + 5 β (β1) 1 β 1 + 2 β (β1) 3 β (β5) + 5 β 2 1 β (β5) + 2 β 2 = β2 β5 β1 β1 , π΅π΄ = β 1 β5 3 5 β1 2 1 2 = 1 β 3 + (β5) β 1 (β1) β 3 + 2 β 1 1 β 5 + (β5) β 2 (β1) β 5 + 2 β 2 = β2 β5 β1 β1 . Shunday qilib, π΄π΅ = π΅π΄ ekan. Matritsalar va ular ustida amallarMisol 3. π΄π΅ πΆ va π΄ π΅πΆ koβpaytmalarni toping. π΄ = 1 3 β1 1 2 5 , π΅ = 2 β6 1 1 3 β1 , πΆ = β1 2 4 . Koβpaytmalarni hisoblaymiz:
π΅πΆ = β10 1 , π΄ π΅πΆ = β7 11 β15 , ya`ni π΄π΅ πΆ = π΄ π΅πΆ . Teskari matritsaπ β tartibli kvadrat matritsa berilgan boβlsin: π΄ = π11 π21 . . . ππ1 π12 π22 . . . ππ2 . . . π1π . . . π2π . . . . . . . . . πππ Agar π΄ matritsaning determinanti noldan farqli πππ‘ π΄ = π11 π21 . . . ππ1 π12 π22 . . . ππ2 . . . π1π . . . π2π . . . . . . . . . πππ β 0 boβlsa, π΄ matritsa aynimagan matritsa deyiladi. Agar πππ‘ π΄ = 0 boβlsa, π΄ matritsa aynigan matritsa deyiladi. Teskari matritsaπ΄ matritsaga teskari matritsa π΄β1 koβrinishda belgilanadi. Teskari matritsa tushunchasi faqat aynimagan kvadrat matritsalarga taalluqlidir. Ushbu πΈ =
π΄π = kvadrat matritsa birlik matritsa deyiladi. Ushbu π11 π12 . . . π1π π21 π22 . . . π2π . . . ππ1 . . . ππ2 . . . . . . . . . πππ kvadrat matritsa π΄ matritsaga nisbatan transponirlangan matritsa deyiladi. Teskari matritsaAynimagan π΄ matritsa berilgan boβlsin. Agar π΄ β π΄β1 = π΄β1 β π΄ = πΈ boβlsa, π΄β1 matritsa π΄ matritsaga teskari matritsa deyiladi. π΄ matritsaga teskari π΄β1 matritsani topish formulasi: π΄β1 = 1 πππ‘ π΄ π΄11 π΄12 . . . π΄1π π΄21 π΄22 . . . π΄2π . . . π΄π1 . . . π΄π2 . . . . . . . . . π΄ππ , bu yerda π΄ππ β berilgan π΄ matritsaga nisbatan transponirlangan π΄π matritsaning algebraik toβldiruvchilari. Teskari matritsaMisol 1. π΄ matritsa berilgan: a) π΄ = β1 2 1 3 ; b) π΄ = 2 β4 1 1 β5 3 1 β1 1 . π΄ matritsa aynimagan matritsa ekanligiga ishonch hosil qiling, π΄ matritsaga teskari π΄β1 matritsani toping va π΄ β π΄β1 = π΄β1 β π΄ = πΈ tengliklarning bajarilishini tekshiring. Teskari matritsaa) π΄ = β1 2 1 3 matritsaning determinantini hisoblaymiz: πππ‘ π΄ = β1 2 1 3 = (β1) β 3 β 2 β 1 = β5 β 0. π΄ matritsaning aynimagan matritsa ekanligiga ishonch hosil qildik. Endi algebraik toβldiruvchilarni topamiz: π΄11 = 3, π΄12 = β1, π΄21 = β2, π΄22 = β1. Teskari matritsani yoza olamiz: π΄β1 = β 1 3 β2 5 β1 β1 = β3/5 2/5 1/5 1/5 . Teskari matritsaπ΄ β π΄β1 = π΄β1 β π΄ = πΈ tengliklarning bajarilishini tekshirib koβramiz. π΄ β π΄β1 = β1 2 1 3 β β3/5 2/5 1/5 1/5 = 3 5 + 2 β 1 5 2 5 (β1) β + 2 β 1 5 (β1) β β 1 β β 3 5 + 3 β 1 5 2 5 1 β + 3 β 1 5 = 1 0 0 1 = πΈ; π΄β1 β π΄ = β3/5 2/5 1/5 1/5 β β1 2 1 3 = 3 5 3 5 2 2 β β (β1) + β 1 β β 2 + β 3 5 5 β (β1) + β 1
β 2 + β 3 = 1 0 0 1 = πΈ. Teskari matritsab) π΄ = 2 β4 1 1 β5 3 1 β1 1 matritsaning determinantini hisoblaymiz: πππ‘ π΄ = 2 β4 1 1 β5 3 1 β1 1 = β8 β 0. π΄ matritsaning aynimagan matritsa ekanligiga ishonch hosil qildik. Endi algebraik toβldiruvchilarni topamiz: π΄11 = β2, π΄12 = 2, π΄13 = 4, π΄21 = 3, π΄22 = 1, π΄23 = β2, π΄31 = β7, π΄32 = β5, π΄33 = β6. Teskari matritsani yoza olamiz: π΄β1 = β 1 8 β2 3 β7 2 1 β5 4 β2 β6 . Teskari matritsaπ΄ β π΄β1 = π΄β1 β π΄ = πΈ tengliklarning bajarilishini tekshirib koβramiz. π΄β1 β π΄ = β 1 8
= β 1 8 β2 β β4 + 3 β β5 + β7 β β1 2 β β4 + 1 β β5 + β5 β β1 β2 β 1 + 3 β 3 + 2 β 1 + 1 β 3 + β2 β 2 + 3 β 1 + β7 β 1 2 β 2 + 1 β 1 + β5 β 1 4 β 2 + β2 β 1 + β6 β 1 4 β β4 + β2 β β5 + β6 β β1 4 β 1 + β2 β 3 + β6 β 1 β7 β 1 β5 β 1 =
1 = β 8 Xuddi shu kabi π΄ β π΄β1 = πΈ ekanligini koβrsatish mumkin. Matritsaning rangiMatritsaning rangi tushunchasini kiritamiz. π΄ matritsada π ta satrlar va π ta usunlarni ajratamiz, bu yerda π soni π va π sonlarining kichigidan ham kichik yoki teng (π β€ πππ π, π ). Ajratib olingan π ta satrlar va π ta usunlarning kesishmasida turgan elementlardan tuzilgan π βtartibli determinant matritsadan yaralgan minor yoki determinant deyiladi. Masalan, 7 β1 4 5 1 8 1 3 4 β2 0 β6 matritsa berilgan boβlsin. Matritsaning rangiπ = 2 boβlganda 7 β1 1 3 1 8 , 0 β6 , , β1 5 8 1 4 5 β2 β6 β2 0 , 1 3 determinantlar berilgan matritsadan yaralgan determinantlardir. π΄ matritsadan yaralgan determinantlar ichidan noldan farqlilarini ajratib olamiz. Ana shu noldan farqli determinantlar tartibining eng kattasi π¨ matritsaning rangi deyiladi (πππππ΄ deb belgilanadi). Agar π΄ matritsadan yaralgan π βtartibli determinantlarning hammasi nolga teng boβlsa, u holda πππππ΄ < π boβladi. Matritsaning rangiTeorema 1. Quyidagi elementar (oddiy) almashtirishlar bajarilganda matritsaning rangi oβzgarmaydi:
Matritsaning rangiAgar biror matritsa boshqa matritsadan elementar almashtirishlar yordamida hosil qilinsa, bunday matritsalar ekvivalent matritsalar deyiladi. π΄ va π΅ matritsalarning ekvivalentligi π΄ βΌ π΅ deb belgilanadi. Tartibi berilgan matritsaning rangiga teng boβlgan noldan farqli har qanday minor matritsaning bazis minori deyiladi. Matritsaning rangini topish usullari
Birlar va nollar usuli. Elementar almashtirishlar yordamida har qanday matritsani shunday koβrinishga keltirish mumkinki, bunda matritsaning har bir qatori faqat nollardan yoki faqat nollardan va bitta birdan iborat boβladi. Hosil boβlgan matritsa dastlabki matritsaga ekvivalent boβlganligi uchun oxirida qolgan birlarning soni dastlabki matritsaning rangi boβladi. Quyidagi matritsaning rangini va bazis minorini toping. π΄ = . Matritsaning rangini topish usullariYechish. π΄ matritsaning uchinchi ustunini 1 ga koβpaytiramiz. Soβngra, hosil boβlgan 2 birinchi satrni 2 ga koβpaytiramiz va uni toβrtinchi satrdan ayiramiz. Endi uchinchi ustun uchta nollar va bitta birdan (birinchi satrda) iborat boβladi: π΄ βΌ 2 β1 0 β4 β5 βΌ
2 β1 0 β4 β5 βΌ βΌ 2 β1 0 β4 β5 β1 β1 0 β3 β2 4 1 0 2 β1 βΌ
2 β1 0 β4 β5 β1 β1 0 β3 β2 4 1 0 2 β1 . Download 0.95 Mb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling