Reja: Trigonometrik funktsiyalar sistemasining ortogonalligi
JUFT VA TOQ FUNKTSIYaLAR UChUN FURYE QATORI[[[[[[[[
Download 283.5 Kb.
|
- Bu sahifa navigatsiya:
- 1-misol. f(x)=x
6. JUFT VA TOQ FUNKTSIYaLAR UChUN FURYE QATORI[[[[[[[[
f(x) funktsiya biror (- , ) oraliqda aniqlangan bo`lsin. Bu funktsiya argument ishorasining o`zgarishi bilan o`z ishorasini o`zgartirmasa, ya`ni: (1) bo`lsa, f (x) toq funktsiya; agar o`z ishorasini o`zgartirsa, ya`ni bo`lsa, juft funktsiya deb nomlanadi. Quyidagi va integrallar juft funktsiyalar bo`lganda o`zaro teng, toq bo`lganda esa ishoralari bilan farqlanadi. Shuning uchun juft funktsiyalar uchun (3) toq funktsiyalar uchun esa (4) interallar o`rinlidir. Juft funktsiyalar uchun Furye qatorida sinuslar ishtirok etmaydi. U holda, Furye koeffisiyenti quyidagicha bo`ladi: (5) Toq funktsiyalar uchun Furye qatorida kosinuslar va ozod hadlar ishtirok etmaydi. U holda, Furye koeffisiyenti (6) ko`rinishga ega bo`ladi. 1-misol. f(x)=x funktsiya toqdir. Uning Furye qatorida kosinus va ozod had ishtirok etmaydi. bn koeffisiyentlari quyidagicha bo`ladi: 2-misol. f (x)=׀x׀ funktsiya juft. U holda, uning Furye qatorida sinuslar ishtirok etmaydi. a0 koeffisiyent quyidagiga teng bo`ladi: (7) n≠0 bo`lganda an koeffisiyent quyidagidan iborat bo`ladi: (8) ya`ni (bunda k=1,2,3,…). (9) funktsiya uchun Furye qatori quyidagidan iborat: (10) Xulosa Davri 2 dan iborat bo`lgan f(x) funktsiya berilgan bo`lsin. Yig`indisi f(x) bo`lgan quyidagi yaqinlashuvchi trigonometrik qatorni topish talab qilinsin: (1) Agar bu masalaning yechimi mavjud bo`lsa, bu yechim yagona bo`lib, (1) qatorning koeffisiyenti Eyler – Furye formulalari yordamida topiladi: va (2) Hosil bo`lgan (2) qatorga f (x) funktsiya uchun Furye qatori deyiladi. Download 283.5 Kb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling