Son tushunchasini kengaytirish


Son tushunchasining rivojlanishi


Download 298.5 Kb.
bet5/10
Sana04.01.2023
Hajmi298.5 Kb.
#1078795
1   2   3   4   5   6   7   8   9   10
Bog'liq
Oyshaxon1

Son tushunchasining rivojlanishi
Sonlar tabiatni miqdor jihatdan boshqaradi deb aytish mumkin.
J. Maksvell
Tayanch iboralar:son,sonlar turlari,tarixi, belgilashlar, sistema-lar, haqiqiy, ompleks son.
Son-matematikaning asosiy tushunchalaridan biri bo’lib, kishilarning amaliy ehtiyojlaridan kelib chiqqan.Sonlarning vujudga kelishi va taraqqiyoti tarixi ilk bosqichlarini quyidagicha bayon etish mumkin:
N a t u r a l s o n - buyum va turli narsalarni sanash ehtiyoji tufayli paydo bo’lgan.
M u s b a t k a s r s o n — miqdorlarni o’lchash va taqsimlash ehtiyoji tufayli vujudga kelgan.
M a n f i y s o n l a r - matematikaning o’z ehtiyojlari, ya’ni algebraik tenglamalarni yechish va nazariy asoslash ehtiyojlari sababli yaratilgan.
N o l s o n i — manfiy sonlarning kiritilishi tufayli paydo bo’lgan.
Bu ro’yxatni davom ettirish mumkin, lekin biz yuqorida tilga olingan sonlardan so’ng vujudga kelgan irrasional sonlar tarixi xaqida ma’lumotlarni bayon etishga irishamiz.
Pifagor maktabida (miloddan avvalgi V asr) rasional sonlar har qanday kesmalarni aniq o’lchash uchun yetarli emasligi isbotlangan, o’lchovdosh bo’lmagan kesmalar, mavjudligi isbotlangan. Masalan, yuzi 2 ga teng kvadratning tomoni uning diagonali bilan o’lchovdosh emasligi Ye v k l i d n i n g «Negizlar» 10-kitobida qarama-qarshisidan faraz qilish yuli bilan isbotlanadi.
Bu kashfiyot Pifagor ta’limotiga zid edi, chunki ularning fikricha har "qanday miqdorni butun sonlar va ularning nisbatlari orqali ifodalash mumkin. Dastlab, uni sir saqlashga intildilar.
Pifagorchi Gippas Metapontskiy (molod. avv.V asr) ishini davom ettirib, shu asr oxirida Teodor Kerenskiy 3, 5, 6, 7, 8, 10, 11, 12, 13, 44, 15, 17 kvadrat birlik yuzga ega bo’lgan kvadratlarning tomonlari birlik kvadratning tomoni bilan o’lchovdosh emasligini, ya’ni irrasional ekanligini isbotladi, Teetet esa umumiyrok masalani, ya’ni ixtiyoriy butun N son (to’liq kvadrat bo’lmagan) uchun sonning irrasionalligini asosladi.
Cheksiz ko’p kesma va geometrik miqdorlarni butun va kasr sonlar yordamida o’lchab bo’lmasligini anglagan pifagorchilar geometriya va algebrani sonlar haqidagi ta’limot yordamida emas, balki geometriyaning o’zi yordamida asoslashga urindilar. Shunday qilib, g ye o m ye t r i k a l g ye b r a yaratildi va rivojlandi, Shu asosda matematiklar butun sonlarni va har qanday miqdorlarni kesmalar, to’gri to’rtburchaklar va boshqa shakllar yordamida geometrik ifodalashga kirishdilar.
Arab Sharqi mamlakatlarida VII asrdan boshlab matematika rivojlana bordi. Bu davrda son tushunchasining rivojlanishid Markaziy Osiyolik olimlardan Al-Xorazmiy (783-850), Abu Rayhon Beruniy (973-048), Abu Ali ibn Sino (980-1037), Abu Nasr Forobiy (873-950), Umar Hayyom (1048-1131) va boshqalar muhim kashfiyotlar qildilar. Jumladan:
1. Oltmishlik sanoq sistemasi takomillashtirildi;
2. Sonlardan kvadrat ildiz chiqarish usullari ishlab chiqildi;
3. O’nli kasrlar kashf etildi;
5. Binom formulasi isbotlandi;
6. Musbat haqiqiy son tushunchasi kengaytirildi.
Al-Xorazmiy o’zining «Hind xisobi haqida» asarida o’nlik sanoq sistemasini batafsil bayon etgan bo’lsada u faqat 300 yildan so’nggina keng qo’llanila boshlandi,
Manfiy sonlarni birinchi marta fransuz olimi Nikola Shyuke (1445- 1500) ning «Son haqidagi fan», (1484, Lionda 1848 yilda chop etilgan) asarida uchratish mumkin. Lekin bu sonlar haqidagi dastlabki tasavvurlar Hindiston va Xitoy matematiklari asarlarida mavjud bo’lgan. Masalan, xitoy matematiklari beshta noma’lumli beshta chiziqli tenglama sistemasini yechishda manfiy sonlardan oshkor ravishda bo’lmasada foydalanganlar. Hind matematigi B r a x m a g u p t a (598-660) manfiy sonlarni «qarz» sifatida ifodalaydi. U quyidagi qoidalardan foydalanadi: «Ikkita qarzning yig’indisi qarz. Yo’q va qarz yig’indisi yana qarz. Musbat sonni «buyum» deb ataydi, shuning uchun u «buyum» va «qarz» yigindisini ularning ayirmasiga teng deb ta’riflaydi. Agar ular teng bo’lsa, ayirma nol bo’lishini ko’rsatib o’tadi.
Arab matematiklari manfiy ishorani «dushman», musbat ishorani esa «do’st» sifatida qarab, har xil ishorali sonlar ko’paytmasining ishorasi haqida xayotiy «qoidalar»ni talqin etganlar.
Irrasional sonlar sohasida eron, matematigi A l- K a r x i y (1016 yilda vafot etgan) «Al-faxriy» kitobida kvadrat va kub ildizlardan iborat ko’phadlar qiymatlarini topadi, murakkab bo’lmagan kub ildizlar ustida shakl almashtirishlarni amalga oshiradi, masalan, ko’rinishdagi ifodalarni qaraydi. «Rasional» atamasi lotinchadan «ratio» nisbat so’zidan kelib chiqqan bo’lsa, «irrasional» tushunchasi rasional bo’lmagan ma’noda ishlatilgan. Dastlab bu atamalar o’lchovli va o’lchovdosh bo’lmagan miqdorlarga nisbatan qo’llanilgan. V va VI asrlarda Rimlik matematiklar Marsian, Kapella va Kassiodor bu atamalarni lotinchaga «rasional» va «irrasional» deb tarjima qilganlar.
Yevklid «Negizlar» asarida irrasional sonlarni geometrik nuqtai nazardan bayon etadi, ammo eramizning boshiga kelib Yunonistondagi geometrik algebraga qarama-qarshi o’laroq Sharq mamlakatlarida geometriyagina emas, balki arifmetikaga asoslangan algebra ham rivojlana bordi, tekis va sferik trigonometriya, astronomiya uchun zarur xisoblash usullari takomillashdi. Hindiston, O’rta va Yaqin Sharq matematiklari algebra, trigonometriya va astronomiyani rivojlantira borib, irrasional sonlarsiz ish tuta olmas edilar, lekin shunday bo’lsada, ular bu sonlarni ko’p vaqt tan olmay yurdilar. Yunonlar irrasional miqdorni «alogos»- so’zlar bilan ifodalanmaydigan deb, arablar esa «asamm»- gung deb atar edilar.
XVI asrda italyan matematigi R a f a e l B o m b ye l l i(1526-1572) va golland atematigi S i m o n S t ye v i n (1548-1620) ham irrasional soni rasional songa qaraganda kuchli son deb qaragan edilar. Ulargacha ko’pgina Yaqin va Uzoq Sharq matematiklari ham irrasional sonlarni algebrada keng qo’llaganlar. Masalan, Umar Hayyom «Yevklidning qiyin postulatlariga sharhlar» nomli asarida o’sha davr matematikasining rivojlanayotgan nazariyalari va ularning turlicha tatbiq etilishi asosida bo’linadigan birlikni va umumlashgan son tushunchasini kiritdi, ularni son deb atadi. Bu umumlashgan son tushunchasi ham rasional son, ham irrasional sonin o’z ichiga oladi. Shunday qilib, Umar Hayyom qadimgi matematiklarning son xaqidagi tushunchasiga yangilik kiritdi, miqdorlar nisbatini son deb ta’rifladi. Bu nisbat eski ma’noda- butun son, yangi son,edi. Hayyom irrasional miqdor bilan son orasidagi farq yo’qligini ko’rsatib, son tushunchasini musbat haqiqiy son tushunchasigacha kengaytirdi. By soha buyicha ozarbayjonlik matematik Nasriddin Tusiy (at-Tusiy, 1201-1274) ham katta ishlarni amalga oshirdi. U «To’liq to’rttomonlik haqida risola» va «Yevklidning bayoni» asarlarida nisbatlar nazariyasi va son xaqidagi ta’limotni yanada rivojlantirdi. Jumladan, Sharqda va keyinchalik O’rta asr Yevropasida shuhrat qozongan «Yevklidning bayoni» («Tahriri Uklidis») asari ikki xil variantda bizgacha yetib kelgan: birinchisi, qisqa bayoni va ikkinchisi 10 ta kitobdan iborat mufassal bayoni 1594 yilda Rimda chop etilgan. Bu asarida olim kvadrat irrasionalliklar ustida fikr yuritadi, shuningdek, rasional miqdorga quyidagicha ta’rif beradi: «Berilgan miqdorga nisbatda turgan xar qanday miqdor rasional deyiladi, bunda son songa nisbatda bo’ladi». Aks holda u irrasional miqdor deb tushuntiradi, Irrasional miqdor biror miqdorga nisbatan, agar bu miqdor irrasional bo’lsa, sonning songa nisbati kabi munosabatda bo’ladi. Masalan,
yoki
O’rta va Uzoq Sharq matematik va astronomlari oltmishlik kasrlardan foydalanganlar. Bu sohada buyuk o’zbek matematigi va astronomi U l u g’ b ye k (1394-1449) ilmiy maktabining yirik olimlaridan biri G’iyosiddin Jamshid al-Koshiy (1385-1430) ish olib borib, «Arifmetika kaliti» (1427) asarining uch qismida son ta’limotini rivojlantirishga katta hissa qo’shdi. Unda olim butun sonlar arifmetikasi, butun sonlardan ildiz chiqarish umumiy qoidalarini bayon etdi. Shuningdek, binomni butun musbat darajaga ko’tarishni ham birinchi bo’lib Koshiy keltirib chiqardi.
Mazkur asarda turli kasrlar: suratlari birdan iborat bo’lgan misr kasrlari, maxrajlari 60 ga teng bo’lgan bobil kasrlari, surat va maxrajlari turli sonlardan iborat oddiy kasrlar, ularning, yozilish usullari, ular ustida amallarni bajarish va boshqa turli kasrlar bayon qilingan. Bulardan tashqari, olim maxrajlari 10, 100, 1000 va h. k. bo’lgan kasrlarni, ya’ni o’nli kasrlarni qaradi, ularga ta’rif berdi, «o’ndan bir», «yuzdan bir», «mingdan bir» va h. k. atamalarni kiritdi. O’nli kasrlarni yozishda butun qismidan so’ng tik chiziq chizib, so’ng kasr, qismini yozdi yoki butun qismini bir xil siyoh bilan, kasr qismini esa boshqa rangli siyoh bilan yozdi. Al-Koshiy o’nli kasrlar ustida amallar bajarish qoidalarini ifodaladi va ko’p misollarda tushuntirib berdi. Shunday qilib, vatandoshimiz Samarqandlik olim al-Koshiy o’nli kasrlar nazariyasini asoslagan birinchi olimdir.
Yevropada o’nli kasrlar haqida Koshiy zamonidan: bir yarim asr o’tgandan keyin golland matematigi Simon Stevin 1585 yilda asar yozdi. U 1594 yilda yozgan yana bir «Algebraga ilovalar» asarida oldingi-«o’nlik» asaridagi g’oyalarni rivojlantirib, o’nlik kasrlarni xaqiqiy songa cheksiz yaqinlashtirish uchun ham ishlatish mumkinligini ko’rsatdi. Shunday qilib, XVI asrda irrasional son tushunchasini kiritish va asoslash formal usulda bo’lib, o’nli kasrlarni, hisoblash g’oyasi yaratildi. Natural sоnlar to‘plamidagi qo‘shish q оnunlari (o‘rin almashtirish, gruppalash) butun sonlar to`plami uchun ham o‘rinli . Bundan tashqari butun sоnlar to‘plamida qo‘shish m оnоtоnlik qоnuniga bo‘ysunadi.
Yig‘indining mоnоtоnlik qоnuni:
(-7)+(11)>(-9)+(+11)
(-7)+0 > (-9)+0, (-7)+(-3) > (-9)+(-3)
Natural sоnlar to‘plamida yig‘indi har bir qo‘shiluvchidan d оimо katta. Butun sоnlar to‘plamida yig‘indi bu ch еklanishdan хоli.
Ikkita butun sоnning yig‘indisi: a) har bir qo‘shiluvchidan katta bo‘lishi mumkin; b) bir qo‘shiluvchidan katta va ikkinchisidan kichik bo‘lishi mumkin. v) har bir qo‘shiluvchidan kichik bo‘lishi mumkin; g) qo‘shiluvchilardan biriga t еng bo‘lishi mumkin.
Ko‘paytirish .
ta’rif. Ikki butun sоnning ko‘paytmasi d еb, mоduli ko‘paytuvchilar mоdullari ko‘paytmasiga t еng va ko‘paytuvchilar bir хil ishоrali bo‘lsa, plus ish оra bilan оlingan, ko‘paytuvchilar turli ish оrali bo‘lsa, minus ish оra bilan оlinadigan sоnga aytiladi; agar ko‘paytuvchilardan biri n оlga tеng bo‘lsa, ko‘paytma n оlga tеng.

Masalan,










(+3)

× (+8)=24; (-3) × (-8)=24;

(-3) × (8)=-24;

(+3)

× (-8)=-24






















bulardan esa




a*b




=




а




×




b




kеlib

chiqadi, ya’ni ko‘paytmaning m оduli






















ko‘paytuvchilar mоdullari ko‘paytmasiga t еng.

Butun sоnlarni ko‘paytirish uchun

o‘rin almashtirish, grup palash va taqsimоt

qоnunlari o‘rinli. Bu q оnunlarni o‘rinli ekanligini b еavоsita misоllar yordamida ko‘rsatish mumkin.
2×3 = 3× 2 ; (-2) ×(3) = (3) ×(-2) ; (-2) ×(-3) = (-3) ×(-2)
Shunday qilib, natural sоnlar uchun mоnоtоnlik qоnuni butun sоnlar uchun mоnоtоnlik qоnunining хususiy hоlidir.
Natural sоnlar to‘plamidan butun s оnlar to‘plamiga o‘tilganda
ko‘paytirishning ma’n оsi o‘zgaradi. Haqiqatan, a natural sоnni 6 ga ko‘paytirish

  1. sоnni 6 marta оrttirish dеmakdir.

Natural ko‘rsatkichli darajaga ko‘tarish.
Darajaga ko‘tarish amalining natural as оs uchun ifоdalangan ta’rifi istalgan butun asоs uchun ham saqlanadi.
Masalan,
(-4)3=(-4) × (-4) × (-4)=-64
(-2)6= (-2) × (-2) × (-2) × (-2) × (-2) × (-2)=64
Butun sоnlar to‘plamida to‘g‘ri amallar (qo‘shish, ko‘payti rish va darajaga ko‘tarish) d оimо bir qiymatli bajariladi, bu tеgishli qоidalardan bеvоsita kеlib chiqadi.

Ayirish.



















Ayirish

amalining

ta’rifi natural

s оnlar

uchun ayirish

amali qоidasiga

o‘хshash.


Download 298.5 Kb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8   9   10




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling