Пример. На склад поступило 35 холодильников. Известно, что 5 холодильников с дефектами, но неизвестно, какие это холодильники. Найти вероятность того, что два взятых наугад холодильника будут с дефектами.
Решение. Вероятность того, что первый выбранный холодильник будет с дефектом, находится как отношение числа благоприятствующих исходов к общему числу возможных исходов
P(A) = 5/35 = 1/7.
Но после того, как был взят первый холодильник с дефектом, условная вероятность того, что и второй будет с дефектом, определяется на основе соотношения
Искомая вероятность будет
.
Если при наступлении события вероятность события не меняется, то события и называются независимыми.
В случае независимых событий вероятность их произведения равна произведению вероятностей этих событий
P(AB) = P(A)×P(B). (2.3)
Теорема умножения вероятностей легко обобщается на любое конечное число событий.
Теорема. Вероятность произведения конечного числа событий равна произведению их условных вероятностей относительно произведения предшествующих событий, т.е.
P(ABC....LM) = P(A)×P(B/A)×P(C/AB) P(M/AB...L). (2.4)
Для доказательства этой теоремы можно использовать метод математической индукции.
Теорема сложения вероятностей совместных событий
Два события называются совместными, если появление одного из них не исключает появления другого в одном и том же опыте.
Пример. Поступление в магазин одного вида товара — событие . Поступление второго вида товара — событие . Поступить эти товары могут и одновременно. Поэтому и - совместные события.
Теорема. Вероятность появления хотя бы одного из двух совместных событий равна сумме вероятностей этих событий без вероятности их совместного появления
P(A+B) = P(A) + P(B) — P(AB). (2.5)
Доказательство. Событие наступит, если наступит одно из трех несовместных событий ,, . По теореме сложения вероятностей несовместных событий имеем
(2.6)
Событие произойдет, если наступит одно из двух несовместных событий: , . Вновь применяя теорему сложения вероятностей несовместных событий, получаем . Откуда
(2.7)
Аналогично для события Откуда
.(2.8)
Подставив (2.7) и (2.8) в (2.6), находим
Do'stlaringiz bilan baham: |