Turli foizlarni hisoblash va ularni qishloq xo‘jalik masalalarini echishga tatbiqlari. Oddiy foiz masalalarini yechish


Download 1.67 Mb.
bet29/36
Sana05.01.2022
Hajmi1.67 Mb.
#218904
1   ...   25   26   27   28   29   30   31   32   ...   36
Bog'liq
Turli foizlarni hisoblash va ularni qishloq xo‘jalik masalalarin

Yuqori tartibli hosilalar.

Teorema: Agar z=f (x,y) funktsiya va uning xususiy hosilalari (x,y) nuqtalarda va uning biror atrofida uzluksiz bo’lsa, u holda bu nuqtalarda o’rinchi bo’ladi

Izoh: Bu teorema ixtiyoriy sondagi o’zgaruvchi funktsiyasi uchin ham o’rinli.

o’rinli bo’ladi
2. Gradiyent

Skalyar maydonlarni o’rganishda u=F(x,y,z) funktsiya bilan bir qatorda bu funktsiya bilan uzviy bog’liqlik vektor-skalyar maydon gradiyenti ham qaraladi. u=F(x,y,z) differentsiallanuvchi funktsiyaning P (x,y,z) nuqtadagi grediyenti deb,

F’x(x, y,z)i + F’y(x, y,z)j + F’z(x, y,z)k

vektorga aytiladi.



u = F(x, y, z) funktsiyaning grediyenti grad F(x, y, z), grad (P), grad u simvollaridan biri bilan belgilaymiz. Demak, та’rifga ko’ra

grad F = F’x(x, y,z)i + F’y(x, y,z)j + F’z(x, y,z)k


yoki qisqacha yozilsa,

grad u = i + j + k

Shunday qilib, u=F(x,y,z) differentsiallanuvchi funktsiya bilan berilgan skalyar maydonning har bir Р(x,y,z) nuqtasiga faqat bu funktsiyaning qiymatigina mos kelib qolmasdan, balki to’la aniqlangan gradF(P) vector ham mos keladi.




Download 1.67 Mb.

Do'stlaringiz bilan baham:
1   ...   25   26   27   28   29   30   31   32   ...   36




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling