University of economics and pedagogy


Download 215.95 Kb.
bet3/8
Sana02.06.2024
Hajmi215.95 Kb.
#1835634
1   2   3   4   5   6   7   8
Bog'liq
J.Xamidjonov

N'yuton usuli. x* nuqta f(x) funksiyaga minimum beruvchi nuqta bo‘lishi uchun shu nuqtada berilgan funksiyaning gradienti nolga teng bo‘lishi kerak, ya'ni

Shunday qilib, f(x) funksiyaga minimum beruvchi nuqta mavjud bo‘lsa, u nuqta quyidagi

tenlamaning yechimlari orasidan topiladi. Faraz qilaylik x1 nuqta (x)=0 tenglamaning taqribiy yechimi bo‘lsin. (x) funksiyani (x- x1) nuqta atrofida yoyamiz va undan iikita qo‘shiluvchi bilan chegaralanib, quyidagiga ega bo‘lamiz:
va .
munosabatni hosil qilamiz. Maqsad х1, х2,…,хk ... yaqinlashuvchi ketma-ketliklarni topishdan iborat ekanligidan foydalanib, bu formulani quyidagicha rekurrent formula orqali yozamiz:
yoki
Bu formula N'yuton formulasi deyiladi.
N'yuton usuli bo‘yicha hisoblash oldindan berilgan aniqlik >0 son uchun
|xk - xk-1| ≤ 
tengsizlik bajarilgunga qadar davom etadi.
Misol. x2-5=0 tenglamaning musbat yechimi =0,00001 aniqlikda N'yuton usuli bilan topilsin.
Yechish. Berilgan tenglamanieng yechimi 2 bilan 2,5 orasida bo‘lgani uchun dastlabki nolinchi yechim deb x0=2 ni olamiz. Berilgan misolda (x)=x2-5 bo‘lgani uchun э(x)=2x2 .
Demak, unda N'yuton formulasi quyidagicha bo‘ladi:

x0=2 bo‘lgani uchun
,
, |x3 - x2|=|2,23605 -2,2361| ≤ 
Demak, berilgan tenglamaning =0,00001 aniqlikdagi yechimi x*=2,2361 ekan.


Chiziqsiz tenglamalar tizimini yechish uchun N'yuton usuli.
N'yuton usuli chiziqsiz tenglamalar tizimi uchun quyidagicha yoziladi.

Bu yerda
; ;


matritsa Yakobi matritsasi deyiladi.
N'yuton usulining modifikatsiyalangan varianti ham mavjud bo‘lib, unda
funksiyaning hosilalaridan tuzilgan matritsa elementlari faqat dastlabki taqribiy yechim bo‘lgan nuqtalarda hisoblanadi. Bu esa arifmetik hisoblashlarni birmuncha kamaytiradi. U holda modifikatsiyalangan N'yuton usulini quyidagicha yozish mumkin.

Lekin bu modifikatsiyalangan usulda aniq yechimga yaqinlashish tezligi sekinroq bo‘ladi.
M i s o l. Boshlang‘ich taqribiy yechim bo‘lganda

tenlamalar tizimining taqribiy yechimi N'yuton usulida hisoblansin.
Yechish: Bu yerda
; ;
N'yuton formulasiga asosan

Demak, . Endi lardan foydalanib larni hisoblaymiz. Unda
; ;
N'yuton formulasiga asosan lar hisoblansa mos ravishda quyidagiga teng bo‘ladi

Xuddi shu yo‘l bilan larni topsak,

bo‘ladi. Agar uchinchi taqribiy yechim bilan chegaralansak, berilgan tizimning yechimini deb qabul qilamiz.

Download 215.95 Kb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling