Следствие 2. Если многочлены и , степени которых не превосходят , имеют равные значения более чем при различных значениях переменной , то эти многочлены равны: .
В самом деле, по условию многочлен имеет более, чем корней, хотя его степень меньше или равна , что противоречит следствию 1 из основной теоремы алгебры. Следовательно, это многочлен нулевой степени . Так как он имеет корни, то . Следовательно, , то есть .
Это следствие позволяет рассматривать многочлен не как формальное выражение вида (В.8), а как функцию переменной , поскольку равенство многочленов , определенное выше как равенство коэффициентов при одинаковых степенях , совпадает (в силу следствия 2) с понятием равенства двух функций при всех значениях .
Рассмотрим многочлен с действительными коэффициентами . Разложение (В. 13) для этого многочлена имеет вид
где — корни многочлена (могут быть комплексные).
Если комплексное число является корнем этого многочлена, то есть
то сопряженное число также является его корнем, т.е. . Это вытекает из равенства . Поскольку числа и не являются корнями многочлена, то он делится (без остатка) на произведение
Так как сумма и произведение сопряженных чисел являются действительными числами, то правая часть последнего равенства есть квадратный трехчлен с действительными коэффициентами. Причем, если , то дискриминант этого квадратного трехчлена отрицательный.
Следствие 3. Если комплексное (но не действительное) число — корень многочлена с действительными коэффициентами, то сопряженное число является его корнем той же кратности.
В самом деле, если — корень кратности , то для него выполняются условия (В.12)
Из условий
следует, что — корень той же кратности .
Следствие 4. Всякий многочлен с действительными коэффициентами представляется в виде произведения линейных двучленов и квадратных трехчленов (с отрицательными дискриминантами):
(B.14)
где — действительные корни кратности , причем .
Следствие 5. Многочлен нечетной степени с действительными коэффициентами всегда имеет хотя бы один действительный корень.
Многочлен четной степени с действительными коэффициентами может не иметь действительных корней (при этом в разложении (В. 14) отсутствуют линейные двучлены ).
(Формулы Виета) Пусть многочлен имеет корни . Тогда .
|