14-mavzu: Aylanma jism hajmini hisoblash. Cheksiz va uzluksiz funksiyalarning xosmas integrallari. Reja


Download 199.6 Kb.
bet7/9
Sana30.10.2023
Hajmi199.6 Kb.
#1734993
1   2   3   4   5   6   7   8   9
Bog'liq
14-ma’ruza

Chizma1. Egri chiziq uzunligini va nuqtalarni birlashtiruvchi kesmalar uzunliklari bilan yaqinlashtirish.
Ko‘pburchakli yo‘lning –chi kesma uzunligi

Agar biz barcha bunday kesmachalar yig‘indisini olsak egri chiziq uzunligini topamiz

Bu topilgan tenglikni Riman yig‘indilari bilan almashtirish uchun o‘rta qiymat haqidagi teoremani qo‘llaymiz. Ushbu teoremaga ko‘ra va orasida shunday son topiladiki
yoki
Bundan ni formulasini qayta yozishimiz mumkin:

Shunday qilib, kattalashgan sari, kesmachalar maksimal kengligi nolga intilgandagi limiti bizga quyidagi aniq integralni beradi:

Bundan biz quyidagi teoremaga kelamiz:

1Gerd Baumann, Mathematics for Engineers. I. Oldenburg Wissenschaftsverlag GmbH,Munchen, 2010. 356-b.
Teorema. Yoy uzunligi ([1] G. Bauman. Mathematics for engineers I-II. Oldenbourg Wissenschaftsverlag GmbH. 2010.)
Agar funksiya intervalda silliq egri chiziq bo‘lsa, u holda bu chiziqning intervaldagi uzunligi

bilan aniqlanadi.
Ushbu natija yoy uzunligini ham ta’riflaydi, ham hisoblash formulasi bo‘lib hizmat qiladi. Qaysi bir holda (5.120) formulani boshqacha ko‘rinishda ishlatish qulay, ya’ni

Bundan tashqari, agar egri chiziq ko‘rinishda berilgan bo‘lib, bunda intervalda uzluksiz bo‘lsa, u holda uzunligi dan gacha quyidagicha formula orqali topiladi:

Misol. Ushbu

funksiya grafigi ifodalovchi yoyning uzunligi topilsin.


bo‘lishini e’tiborga olib, (5) formuladan foydalanib topamiz:


Faraz qilaylik,
(6)
funksiyalar da uzluksiz va uzluksiz hosilalarga ega bo‘lsin. Bu funksiyalarning nuqtadagi qiymatlari

dan tashkil topgan juftlik, tekislikda koordinatalari va bo‘lgan nuqtani ifodalaydi. o‘zgaruvchi da o‘zgarganida unga mos

funksiya qiymatlaridan tashkil topgan juftliklar to‘plami tekislikda biror egri chiziqni tasvirlaydi.
(6) sistema egri chiziqning parametrik tenglamasi deyiladi,  esa parametr deyiladi.
Aytaylik, egri chiziq (6) sistema bilan berilgan bo‘lsin. Uning uzunligi ushbu

integral yordamida topiladi.
Misol. Ushbu

tenglamalar sistemasi bilan aniqlangan yoyning (sikloidaning) uzunligi topilsin.
Ravshanki,
 ,

bo‘lib,

bo‘ladi. Endi deb,
(7) formuladan foydalanib, egri chiziqning uzunligini topamiz:


Faraz qilaylik, egri chiziq qutb koordinatalar sistemasida ushbu

tenglama bilan berilgan bo‘lsin. Bunda funksiya  da uzluksiz va uzluksiz hosilaga ega. Bu egri chiziq tenglamasini quyidagicha

parametrik ko‘rinishida yozib, so‘ng (7) formuladan foydalanib, yoyining uzunligini topamiz:


.
Demak,
. (8)
Misol. Ushbu

Arximed spiralining bir aylanishdagi uzunligi topilsin.
(8) formuladan foydalanib topamiz:



Download 199.6 Kb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8   9




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling