60-odd years of moscow mathematical


parts with this area is quadrilateral


Download 1.08 Mb.
Pdf ko'rish
bet134/153
Sana03.10.2023
Hajmi1.08 Mb.
#1690973
1   ...   130   131   132   133   134   135   136   137   ...   153
Bog'liq
Moscow olympiad problems


parts with this area is quadrilateral HOM C. The following cases are possible:
B) See Fig. 113 b). In this case the second solution (given below) is even simpler than arguments in case
C) and the answer is =
1
6
.
C) Suppose that triangles AOB and BOM have the same areas and the area of 4AOH is = 1 − 3S.
Connect and with a segment, see Fig. 113 b).
Let BC aBM xAC bCH y. The ratio BM
M C is equal to the ratio of the areas of the
triangles with the bases BM and M C and a common vertex A, i.e.,
x
a − x
=
2S
s
.
Similarly, having considered 4ABH and 4CBH we get
y
b − y
=
2S
s
. Consequently,
x
a − x
=
y
b − y
,
whence
x(b − y) = y(a − x⇐⇒ bx ay ⇐⇒ y =
xb
a
.
Denote: |AB| c. From 4ABM we have
= 12 · S
ABM
= 12 ·
1
· xc sin =
1
bx sin C
because sin sin by the law of sines.
To define the areas of all four parts into which 4ABC is divided, we can calculate by two methods.


168
SOLUTIONS
On the one hand, is the area of 4AHO:
= 1 − 3= 1 − 32S
4ABM
= 12ab sin C −
3
bx sin =
1
b
³
a − 32x
´
sin C.
(1)
On the other hand, S − s is the area of 4HM C, i.e., it is equal to
1
2
y(a − x) sin C, whence =
S −
1
2
y(a − x) sin C. By substituting =
1
4
bx sin and =
b
a
into (1) we get
= 14bx sin C −
1
2
b
a x(a − x) sin =
1
bx
³
1

1
(a − x)
´
sin C.
(2)
We equate the right-hand sides of (1) and (2):
1
b
³
a − 32
´
sin = 12bx
³
1

1
(a − x)
´
sin C ⇐⇒
³
a − 32
´
x
³
x
a −
1
2
´
therefrom we get the following quadratic equation for x:
x
2
ax − a
2
= 0.
Hence,
a

− 1
2
τ a,
=
xb
a
b

− 1
2
τ b,
where τ =

− 1
2
It remains to calculate and s:
= 14bx sin =
1
ab sin C

− 1
4
=

− 1
4
τ2
(since
1
2
ab sin = 1 by the hypothesis);
= 1 − 3= 1 − 32τ =
− 3

5
4
.
Figure 113. (Sol. A29)
Another solution. The same problem has a simpler solution if we use allow to use affine transforma-
tions of the plane — a composition of (a) a parallel translation and (b) a rotation in space with subsequent
projection to original plane and (c) a homothety. Such a transformation does not change the ratio of areas
of any two figures. Let us make use of the affine transformation which turns the original triangle into an
equilateral one and solve the problem set for the triangle obtained.
Despite of the fact that the solution seems to satisfy only the particular case of an equilateral triangle,
it nevertheless is a solution for all triangles because of the affine nature of the problem.
The solution is based on the same reasoning as above but is much simpler. Indeed, case b) becomes
completely obvious and in case c)
y,
1
2
(a − x)

3
2
S − s,
+ 3=
a

3
4
,
1
2

3
2
= 2S


SOLUTIONS TO SELECTED PROBLEMS OF MOSCOW MATHEMATICAL CIRCLES
169
(is the length of the side of the regular triangle) therefrom it is easy to get the same quadratic equation
x
2
ax − a
2
= 0 with the positive root τ a.
The number τ =

− 1
2
, the positive root of the equation x
2
x − 1 = 0, is a remarkable number in
Mathematics and even has a special name: the “golden section” or “Mister Tau.” It has many interesting
and beautiful properties, one of which is that its continued fraction expansion is one of the simplest possible:
τ =
1
1 +
1
1 +
1
1 + . . .
The golden section first appeared in geometry during the search for “golden” rectangles which remain
similar to themselves after squares are cut off from them. Let the longer side of a golden rectangle be 1 and
the shorter side be τ ; the “goldness” property is then
τ
1
=
− τ
τ
equivalent to τ
2
τ − 1 = 0.
Mr. τ appears in many other geometric problems, e.g., in a problem on a regular pentagon. Let ABCDE
be a regular pentagon, see Fig. 113 d). Then its side is τ times smaller than the diagonal (AB τ BD) and
the diagonals divide each other in the ratio of τ : 1 (BT τ BD, DK τ AD). You can work out a proof
yourself or look up in [Cox].
But why did Mr. τ appear when we solved our problem of cutting a triangle? Could we anticipate it
and perceive Mr. τ directly without calculations?
Since, as was mentioned above, the problem is of affine nature, it suffices to replace from the very
beginning an arbitrary triangle with a special one for which everything is clear. We tried an equilateral
triangle as a most natural simple example but it proved to be only a trifle simpler than the original one and
we still had to calculate. So for this problem the obvious idea of simplicity does not fit. What we need is
the triangle ABD composed of the diagonals BDAD and the side AB of the regular pentagon ABCD and
the intercepts AT and BK in it, see Fig. 113 d).
Indeed, S
4AOB
S
4BOT
since AO OT (the diagonal AT of parallelogram ABT E is divided in
halves by the other diagonal BE). In addition, S

Download 1.08 Mb.

Do'stlaringiz bilan baham:
1   ...   130   131   132   133   134   135   136   137   ...   153




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling