60-odd years of moscow mathematical


Download 1.08 Mb.
Pdf ko'rish
bet138/153
Sana03.10.2023
Hajmi1.08 Mb.
#1690973
1   ...   134   135   136   137   138   139   140   141   ...   153
Bog'liq
Moscow olympiad problems

n
+
1
q
.
Let ε =
min
1≤q≤2·
+ 1
x
ε
q
. Then no number from the segment ]x − ε, x[ can be represented as
1
a
1
· · · +
1
a
n
+
1
a
n+1
, where a
i
≤ ·
+ 1
x
for = 12, ..., n + 1 (the a
i
’s can be permuted and renumbered).
If a
i
·
+ 1
x
for all i, then
1
a
1
· · · +
1
a
n
+
1
a
n+1
<
1
2
which for ε <
1
2
does not belong to the
segment either. Q.E.D.
53. Each edge of the cube has a point of the polyhedron because otherwise the projection of the poly-
hedron along this edge would not coincide with the face. Take one point of the polyhedron on each edge of
the cube and consider the new convex polyhedron with vertices at these points. Since the new polyhedron
is a part of the original one, it suffices to prove that its volume is not less than one-third of the volume of
the cube.
We can assume that the length of the edge of the cube is 1. The new polyhedron is produced by cutting
off tetrahedrons from trihedral angles at the vertices of the cube. Let us prove that the sum of the volumes
of two tetrahedrons corresponding to the vertices belonging to one edge of the cube does not exceed
1
6
. This
sum is
1
3
S
1
h
1
+
1
3
S
2
h
2
, where h
1
and h
2
are heights dropped to the opposite faces of the cube from the
vertex of the polyhedron, which belongs to the given edge of the cube, and where S
1
and S
2
are areas of the
respective faces of the tetrahedron. It remains to observe that S
1

1
2
S
2
<
1
2
, and h
1
h
2
= 1.
Four parallel edges of the cube set a partition of the cube’s vertices into 4 pairs. Therefore, the volume
of all cut-off tetrahedrons does not exceed
4
6
=
2
3
, i.e., the volume of the remaining part is 
1
3
. This
estimate is a precise one: for cube ABCDA
1
B
1
C
1
D
1
the equality is attained for tetrahedrons AB
1
CD
1
and
A
1
BC
1
D.
Figure 118. (Sol. A54)
Figure 119. (Sol. A55)
55. First, prove the following
Lemma: for an arbitrary triangle ABC and for arbitrary points B
1
on side AC and C
1
on AB the
area of 4CBM is greater than that of 4C
1
B
1
M , where M is the intersection point of BB
1
and CC
1
, see
Fig. 119 a).
Now, observe that if ABCDE is the original pentagon and A
1
B
1
C
1
D
1
E
1
is the smaller pentagon, then
the number calculated for the smaller pentagon is equal to
S
A
1
B
1
C
1
S

Download 1.08 Mb.

Do'stlaringiz bilan baham:
1   ...   134   135   136   137   138   139   140   141   ...   153




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling