Atom tuzilishining modellari. Vodorod atomining bor nazariyasi 1-§. Atom tuzilishining modellari


-§. Doiraviy orbitalarni kvantlash


Download 0.49 Mb.
bet5/10
Sana01.06.2020
Hajmi0.49 Mb.
#112689
1   2   3   4   5   6   7   8   9   10
Bog'liq
Atom tuzilishining modellari. Vodorod atomining bor nazariyasi


4.9-§. Doiraviy orbitalarni kvantlash
Stasionar holatlar energiyasi kvantlash qoidasi bilan aniqlanadi. Agar elektronlarning doiraviy orbitalari qarab chiqilsa, Borning ikkinchi postulatiga asosan atomda elektronning impuls momenti Plank doimiyligiga karali bo‘lgan shartni qanoatlantiradigan orbitalargina mavjud bo‘la oladi, ya’ni


L mr nh(n 1,2,3,...).

(4.25)

Bunda n – butun son bo‘lib, kvant soni deyiladi. (4.25) formula elektronning impuls momenti – L kvantlanganligini, uning faqat 1ħ,2ħ,3ħ,... bo‘lgan diskret qiymatlarnigina qabul qilishi mumkinligini ko‘rsatadi. Bunda ħ impuls momentining birligi qilib qabul qilinadi. (4.25) formula doiraviy orbitalarni kvantlash qoidasidir. Bu qoida yordamida vodorod atomining doiraviy stasionar orbitalar o‘lchamlarini va ularga tegishli energiyalarni hisoblash mumkin. Yadro massasi elektron massasidan 2000 marta katta bo‘lganligi uchun yadro qo‘zg‘almas deb qaraladi. Elektron esa yadro atrofida radiusi r bo‘lgan aylana bo‘ylab harakatlanadi.
Yadro koordinatalar tizimi boshiga joylashtirilgan bo‘lsin. Yadrodan cheksiz uzoqdagi masofada elektronning potensial energiyasi nolga teng deb hisoblanadi. Bu vaqtda zaryadi +Ze
96

bo‘lgan yadrodan r masofadagi elektronning to‘liq energiyasi quyidagicha ifodalanadi:


Е= En+ EkyokiЕ= -




Ze2

+

m2

.

(4.26)




40r

2








































Bu formulada Еn

= -

Ze2




– elektronning

yadro

bilan

o‘zaro




40r




















































Еk=

m2
















tortishuv potensial

energiyasi,












elektronning

kinetik




2











































energiyasi, m – elektronning massasi, – uning tezligi, e – elektronning zaryadi, 0 – vakuum uchun dielektrik doimiylik.
Elektron yadro atrofida aylanma orbitada harakatlanadi deb hisoblanadi. U holda yadro elektr maydonidagi elektronga ta’sir etadigan Kulon tortishish kuchi markazga intilma kuchga teng bo‘ladi, ya’ni


Ze2

=

m2

,

(4.27)




4

0r

2
















(4.27)dan m2 qiymatini topib (4.26) ifodaga qo‘yilganda, elektronning to‘liq energiyasi quyidagicha ifodalanadi:
orbita bo‘ylab harakat kilayotgan elektronning to‘liq energiyasini aniqlash mumkin, ya’ni:


Е = -

Z 2e4m




×

1

.

(4.31)




2

2

2

n

2







32

0 h



















Bu formula vodorod atomida elektronning stasionar holatlarining energiya sathini ifodalaydi. (4.31) formuladan ko‘rinadiki, elektronning to‘liq energiyasi n kvant soniga bog‘liq. n – elektron orbitalari tartib raqamini bildiradi va n=1,2,3,... qiymatlarni qabul qiladi. (4.31) formula atom chiqaradigan yoki yutadigan energiyasini ifodalaydi va uning kvantlanganligini ko‘rsatadi. n=1,2,3,...
bo‘lgandagi energiyaning mumkin bo‘lgan qiymatlari (4.31) formula orqali hisoblanadi. n da energetik sathlar o‘zining E=0 bo‘lgan chegaraviy qiymatiga tomon zichlashadi. Atomning n=1 bo‘lgan eng kichik energiyali holati uning asosiy holati deyiladi. Atom asosiy holatda uzoq vaqt bo‘lishi mumkin. Atomning n=2,3,4,... bo‘lgan holatlari (n>1) uning uyg‘ongan holatlari deyiladi. Bu holatlarning har birida atomning energiyasi uning asosiy holati energiyasidan katta bo‘ladi. (4.31) formuladagi manfiy ishora atom tizimining bog‘langanligini va energiyaning kvantlanganligini ko‘rsatadi.
(4.31) formulaga elektron massasi va zaryadi son qiymatlarini (m=9,11∙10–31kg, e=1,6∙10–19Kl) qo‘yib hisoblanganda:

Е= - Ze2,

80r


(4.28) ifodaning har ikkala tomonlarini mr3 quyidagini hosil qilamiz:
(4.28)
ga ko‘paytirib



Еn= -13.6 / n2eV , n =1,2,3,...

(4.31a)

formula hosil bo‘ladi. (4.31a) formula orqali n ning turli qiymatlariga to‘g‘ri keladigan energiya hisoblanganda energiyaning quyidagi qiymatlari hosil bo‘ladi:

Ze2 mr

2

2




2













= m




r




.

(4.29)




40










Bu formulada o‘ng tomondagi ifoda impuls momenti kvadratidir. Shuning uchun Borning birinchi postulati (4.25) ifodaga asosan (4.29)ni quyidagicha yozish mumkin:


n2h2=

Ze2 mr

,

(4.30)













40







(4.28) va (4.30) tenglamalarining tegishli o‘ng va chap tomonlarini ko‘paytirib, zaryadi +Ze bo‘lgan yadro atrofida doiraviy

97
n=1 E1=–13,55 eV n=2 E2=–3,38 eV n=3 E3=–1,5 eV n=4 E4=–0,84 eV n=5 E5=–0,54 eV n=6 E6=–0,38 eV


Hisoblangan energiya qiymatlaridan ko‘rinadiki, orbita radiusi ortishi bilan elektronning manfiy qiymatli energiyasi kamayib boradi. E0 da energetik sathlar zichlashib boradi. E>0 da elektron erkinbo‘ladi va energetik sathlar kvantlanmaydi, uzluksiz spektr hosil bo‘ladi.
98


Shunday qilib, elekton energetik sathlari energiyasi kvantlangan bo‘lib, (4.31) yoki (4.31a) formulalar bilan aniqlanadigan diskret qiymatlarga ega bo‘ladi. Endi Borning uchinchi postulatidan foydalanamiz. Elektron ni stasionar orbitadan nf stasionar orbitaga o‘tganda, atom yorug‘lik kvanti chiqaradi. Uning energiyasi quyidagicha aniqlanadi:


h= Ei- E f,

(4.32)

energiya uchun yozilgan (4.31) formulaga asosan (4.32) formulani quyidagi ko‘rinishda yozish mumkin:
















Z 2e4 m

æ

1




1

ö







h= E




- E




=







ç




-




÷ .

(4.33)










322

2h2




n2







i




f




ç n2




÷

























0

è

f




i

ø







niva nflar yuqori Eiva pastki Efenergetik sathlarga tegishli bo‘lgankvant sonlardir. (4.33) formula vodorod atomining spektrini tahlil qilish asosida hosil qilingan. (4.33) formuladan atom chiqaradigan energiya chastotasini hisoblash formulasini hosil qilish mumkin, ya’ni:




с




Z 2e4m

æ

1

1

ö






















ç










÷




 =

= 322

0

h2h ç n2

-n2 ÷



















è

f




i

ø




Bunda h=2h ; hh2 va =c ekanligi hisobga olinganda,

atom chiqaradigan foton energiyasining to‘lqin uzunligini aniqlash mumkin bo‘lgan formula hosil bo‘ladi, ya’ni



1




Z 2e4m

æ

1




1

ö




























ç













÷












= 643

2h3

с ç n2

-n2

÷

(4.34)










0




è

f







i

ø







Bu formuladan:











































R =




Z 2e4m




.




(4.35)














































64302h3c
R – Ridberg doimiyligi deyiladi.
(4.35) ifodada vodorod atomi uchun Z=1, u holda


R =

e4m

(4.36)










64302h3c
99

U vaqtda (4.34) formulani quyidagicha yozish mumkin.




1

æ

1




1

ö










= Rç




-




÷

(4.37)









n2




ç n2




÷










è

f




i

ø







(4.36) formula empirik formula bo‘lib, shvesiyalik olim Yu.R.Ridberg tomonidan ishlab chiqilgan. Ridberg doimiyligi bir smda joylashadigan to‘lqin sonini bildiradi. (4.35) formulagakiradigan fizik kattaliklar e,m,ħ larning son qiymatlarini qo‘yib hisoblanganda, R ning nazariy hisoblangan qiymati hosil bo‘ladi: R=109737 sm–1. R ning bu qiymati tajribada spektroskopik usul bilananiqlangan qiymatiga juda yaqindir. Bu esa vodorod atomi energetik sathlari energiyasini aniqlash uchun Bor tomonidan ishlab chiqilgan (4.31) formulaning to‘g‘riligini tasdiqlaydi.
Bor nazariyasi atomda bo‘lishi mumkin bo‘lgan stasionar orbitalarning radiusini hisoblashga imkon beradi. (4.30) formuladan stasionar orbita o‘lchami aniqlanadi.




4

0

h2







r = r =







×n2 , n = 1,2,3,...

(4.38)
















n

e2 m






















Atomdagi birinchi stasionar orbita o‘lchami aniqlanganda n=1 deb olinadi (atomning asosiy xolati). U vaqtda:
r1=420h2=0.53Å e m

r=rB=0,53Å
rB– Bor orbitasi radiusi deyiladi. Bu natija gazlar kinetik nazariyasiberadigan qiymat bilan mos keladi. (4.38) formuladan:
rn=n2r1. (4.39)(4.39) formula atom stasionar orbitalari radiuslari (o‘lchamlari)
kvantlanganligini va ularning diskret r1,4r1,9r1,... qiymatlarinigina qabul qilishini ko‘rsatadi.
4.10-§. Elliptik orbitalarni kvantlash
Doiraviy orbitalar yadroning Kulon maydonida harakatlanayot-gan elektron orbitalarining xususiy holi hisoblanadi. Elektronlar harakatining orbitalari umumiy holda elliptik orbitalar deb qaraladi.

100


Ch.Vilson va A.Zommerfeld tomonidan kvantlash qoidasi elliptik orbitalar uchun umumlashtirildi. Erkinlik darajasi j bo‘lgan mexanik tizim umumlashgan koordinata qi(i=1,2,...,j) va umumlashgan impuls Ri bilan ifodalanadi.





Pi

Еk

(4.40)







&




Ek




qi

– umumlashgan




– tizimning kinetik energiyasi, qi










&






koordinatalarning vaqt bo‘yicha hosilasi.


Agar tizim j erkinlik darajasiga ega bo‘lsa, uning harakatiga ni(i =1,2,3,...) kvant sonlari yordamida j kvantlash shartlari qo‘yiladi.Bu kvant shartlar quyidagi ko‘rinishdadir:

òidqi2hni(ni=1,2,3,...,i=1,2,3,…,j),

(4.41)

(4.41) ifodada umumlashgan koordinatalar qi sifatida shunday koordinatalar olinadiki, ularda har bir Pi impuls faqat umumlashgan qikoordinatalarga tegishli funksiya hisoblanadi. Integral sohasisifatida tegishli o‘zgaruvchining barcha o‘zgarish sohasi olinadi. (4.41) shart tizimning harakatini kvantlashga imkon beradi.
Vodorodsimon atom elliptik orbitalarining kvantlashini quyidagicha qarash mumkin: umumlashgan koordinata sifatida qutb burchagi va r – elektronning zaryadi Ze bo‘lgan yadro turgan joyga to‘g‘ri keladigan koordinata boshidan elektron o‘zi turgan nuqtasigacha bo‘lgan masofa olinadi. Koordinatalar boshida joylashgan zaryadi Ze bo‘lgan yadro joylashgan deb hisoblanadi. U vaqtda tizimning kinetik energiyasi:


Ek









1




(4.42)




2m(r

2

2 2

)













r







Umumlashgan impuls esa:







Ek

2







P






mr const ,

(4.43)









































Pr



Ek

&

(4.44)




&

mr .










r










Pning doimiy bo‘lishining sababi ta’sir etuvchi kuchlarmarkaziy kuchlar ekanligidir. Energiyaning saqlanish qonuniga

101


asosan elektronning yadro maydonidagi to‘liq energiyasini quyidagicha yozish mumkin:
E Ek Ze2/(40r)(Pr2 P2/ r) /(2m) Ze2/(40r). (4.45)
Tizim tekis harakat qilgani uchun ikkita erkinlik darajasiga ega, u vaqtda kvantlash sharti ham ikkita bo‘ladi:

ò Р d2hn,

(4.46)

ò Pr dr 2hnr.

(4.47)

Bunda nazimutal, nr – radial kvant sonlar deyiladi, Pr – radial impuls, P – azimutal impuls.

P=L=const,

(4.48)

bo‘lishi shartidan




P=L=nħ,

(4.49)

ekanligi kelib chiqadi. (4.49) formulada ning 0 dan 2 gacha o‘zgarishi hisobga olingan. (4.47)dagi radial kvantlashni bajarish uchun umumlashgan impuls Pr ni r funksiyasi sifatida ifodalash kerak:

P (A 2B / r c / r 2)1/ 2.

(4.50)




r
















Bunda
















A 2mE; B mZe2/(4

0

);

C n2h2.

(4.51)


















Shuning uchun (4.49) formulada keltirilgan radial kvantlash




shartini quyidagi ko‘rinishda ifodalash mumkin:










òA 2B / r c / r21/ 2 dr 2hnr,

(4.52)




(4.52) formula integrallash chegarasi r ning mumkin bo‘lgan barcha qiymatlarini o‘z ichiga oladi. r ning minimal va maksimal qiymatlarida integral tagidagi ifoda nolga aylanadi. Buning ma’nosi shundan iboratki, bu nuqtalarda elektronning yadroga maksimal yaqinlashishi va yadrodan maksimal uzoqlashishida elektronning radial tezligi nolga aylanadi. Natijada radial impuls Pr ham nolga
aylanadi, ya’ni Prmr&0 bo‘ladi.
(4.52) ifodadagi integral odatdagidek hisoblanadi:
ò( A 2B / rc / r2 )1/ 2dr2i(c B / A); (i 1) . (4.53)Shunday qilib,


102


4.10-rasm





Ze2







m




 (nnr )h .

(4.54)




40






















2mE






















Bundan esa n chi elliptik orbitadagi elektronning energiyasi aniqlanadi:


E

n



Z 2e4m










1



Z 2e4m

.

(4.55)




32220h2 (n

r

n )2




3222h2n2






















































0










(4.55) formula elektron orbitalari elliptik bo‘lganda atom stasionar holatining energiyasini ifodalaydi. Bu formulada n butun musbat son bo‘lib, n=n +nr deb olingan. n bosh kvant son deyiladi. Elliptik orbitalar uchun yozilgan (4.55) ifodani doiraviy orbitalar uchun yozilgan (4.31) ifoda bilan taqqoslashdan ko‘rinadiki, elliptik orbitalar uchun ham energiya qiymati doiraviy orbitalar uchun bo‘lgan energiya qiymatidek bo‘ladi. Farqi faqat shundaki, doiraviy orbitalar holidagi kvant soni (n), elliptik orbitalarda azimutal (n) va radial (nr) kvant sonlari yig‘indisiga teng bo‘ladi. Mumkin bo‘lgan ko‘p sondagi ellipslardan (4.46) va (4.47) kvantlash shartlari orqali o‘lchami va shakli n hamda nr kvant sonlari bilan topiladigan aniq ellipslar ajratiladi.


n nr const

(4.56)

bo‘lgan barcha ellipslar aniq doiraviy orbitalarga energiya jihatidan ekvivalent bo‘ladi.

Shunday qilib, kvantlash qoidasi yordamida elliptik orbitalarda harakatlanayotgan elektron energiyasi (4.55) formula orqali aniqlanar ekan. (4.46) va (4.47) formulalar elliptik orbitalarni kvantlash qoidalarini ifodalaydi.


Download 0.49 Mb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8   9   10




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling