Book · January 994 citations 110 reads 2,264 authors
Download 5.72 Mb. Pdf ko'rish
|
1994 Book DidacticsOfMathematicsAsAScien
of word meaning. New York: Springer.
Seiler, T. B. (1984). Was ist eine "konzeptuell akzeptable Kognitionstheorie"? Anmerkungen zu den Ausführungen von Theo Herrmann: Über begriffliche Schwächen kognitivistischer Kognitionstheorien. Sprache & Kognition, 2, 87-101. Snow, R. E. (1983). Theory construction for research on teaching. In R. W. Travers (Ed.), Second handbook of research on teaching (pp. 77-112.). Chicago, IL: Rand McNally. Thompson, A. (1982). Teachers' conceptions of mathematics and mathematics teaching: Three case studies. Unpublished doctoral dissertation. University of Georgia. Athens, GA. Thompson, A. (1992). Teachers' beliefs and conceptions: A synthesis of the research. In D. Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp. 127- 146). New York: MacMillan. Weiss, I. R., Boyd, S. E., & Hessling, P. A. (1990). A look at exemplary NSF teacher en- hancement projects. Chapel Hill, NC: Horizon Research. Wheeler, M. M., & Feghali, I. (1983). Much ado about nothing: Preservice elementary school teachers’ concept of zero. Journal for Research in Mathematics Education, 14, 147-155. Wilson, M. R. (1991). A study of three preservice secondary mathematics teacher's knowl- edge and beliefs about mathematical functions. Unpublished doctoral dissertation, University of Georgia, Athens, GA. Wittmann, E. (1992). One source of the broadcast metaphor: Mathematical formalism. In F. Seeger & H. Steinbring (Eds.), The dialogue between theory and practice in mathemat- ics education: Overcoming the broadcast metaphor. Proceedings of the Fourth Conference on Systematic Cooperation between Theory and Practice in Mathematics Education (SCTP). Brakel, Germany (pp. 111-119). IDM Materialien und Studien 38. Bielefeld: Universität Bielefeld. Yackel, E., Cobb, P., Wood, T., Wheatley, G., & Merkel, G. (1990). The importance of social interaction in children’s construction of mathematical knowledge. In T. J. Cooney & C. R. Hirsch (Eds.), Teaching and learning in the 1990s (pp. 12-21). Reston, VA: National Council of Teachers of Mathematics. 116 CHAPTER 3 While Chapter 2 on teacher education and research on teaching took the principal agent inside the classroom – the teacher – as the focus of the pa- pers and thus analyzed one pole of the "didactical triangle" (the teacher, the student, and the knowledge (to be) taught/learned, i.e., the didactical system in a narrow sense), chapter 5 on the psychology of mathematical thinking can be taken as an attempt to analyze the second human pole of this triangle. This chapter 3 on interaction in the classroom focuses on research con- cerned with communication and social interaction processes in mathematics teaching and learning. Concentrating on the interaction of the human agents does not just provide a link between chapter 3 on the teacher and chapter 5, which concentrates on the student, the learner. These perspectives also pro- vide new insights into problems of teaching and learning that could not have been gained from the reduced perspectives. Research on teachers and teacher cognition already spread in the context of the modern mathematics reform movement in the late 1960s and early 1970s. Research on student's cognition has even a much longer tradition. Detailed studies on classroom R. Biehler, R. W. Scholz, R. Sträßer, B. Winkelmann (Eds.), Didactics of Mathematics as a Scientific Discipline, 117-120. © 1994 Dordrecht: Kluwer Academic Publishers. Printed in the Netherlands. INTERACTION IN THE CLASSROOM edited and introduced by Rudolf Sträßer Bielefeld interaction, however, had to wait until the second half of the 1970s and were – at least partly – undertaken to understand and explain the "failure" of this movement in the so-called industrialized countries. In the 1980s, research on classroom interaction gained momentum with large research programs being funded and growing attention being gained in the research commu- nity. Because of the wealth of this field, some pertinent topics are not treated separately in this chapter. For example, the most important question of research methodology is discussed in each of the papers at least implic- itly, but is not given a separate place. The first two papers of the chapter (Bartolini-Bussi and Bauersfeld) can serve as an illustration of a second most important distinction in the field: the complementarity of supporting innovations in mathematics teaching and of constituting a body of reliable knowledge on the teaching/learning process in the mathematics classroom. The two papers present two different research approaches and two different paradigm choices and by doing so throw light on the methodology issue. In Download 5.72 Mb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling