Book · January 994 citations 110 reads 2,264 authors


particular concept or cluster of concepts or to a particular curriculum. As


Download 5.72 Mb.
Pdf ko'rish
bet85/176
Sana20.10.2023
Hajmi5.72 Mb.
#1712691
1   ...   81   82   83   84   85   86   87   88   ...   176
Bog'liq
1994 Book DidacticsOfMathematicsAsAScien


particular concept or cluster of concepts or to a particular curriculum. As
curriculum designers, can we afford a different tool for every concept?
Clearly, questions about goals are involved here: What is the curriculum
driving at? A didactically based tool can be designed to be adapted to a par-
ticular curriculum with its specific learning goals (Dreyfus, in press). It be-
comes an organic component of that curriculum. A mathematically based
tool, on the other hand, has to be used by the curriculum as it has been pro-
duced and brought to the market. In didactically based tools, we can deal
with didactical design (Dugdale, 1992). Are we looking for cognitive tools
for learning mathematics, or is the aim for the students to learn to use
(computerized) mathematical tools? Should the mathematics that students
learn depend on the tool, or should the tool depend on the mathematics to be
learned? While, today, the answer, at least from the point of view of a math-
ematics educator, might still seem quite clear – the mathematical concepts
should be the primary objective and should determine the tools – the dis-
tinction between these two poles has decreased progressively over the past
few years and might disappear almost completely in the (not too far) future.
Biehler (in press) has suggested, for the domain of statistics, to build didac-
tically based elements onto a mathematically based tool. Mathematics, at
least the mathematics to be taught in school, might become more tool-ori-
ented, and, at the same time, the general-purpose tools might become more
didactically appropriate.
207


4.2 The Black Box Issue
Any computer program, whether or not intended for didactic use, is a black
box to the user at some level of depth. Two extreme examples are a simple
drill-and-practice program at one end of the spectrum and a Logo mi-
croworld at the other end. The drill-and-practice program is "black," that is,
inaccessible and opaque, to students at a very high level; they only know
whether their answers were right or wrong, but do not get any access or in-
sight to the mathematical content behind; not to speak of the way the con-
tent is structured, the reasons for this structure, or how it is implemented in
the computer program. Some Logo microworlds, on the other hand, can be
thought of as learning environments left completely open to the students;
namely, they may not only enter and analyze the Logo code constituting the
microworld but may even reprogram it, thus changing the microworld itself.
(Obviously, this environment is also "black" at some level: Most students
do not know how the Logo interpreter works.)
Mascarello and Winkelmann (1992) have posed the question at what
level of depth the black box should be. How much of the inner workings of
a computer tool do students need to know? How much of it should they
know in order for the learning experience to be maximally effective? In
other terms, what types of actions should be available to the student who in-
teracts with a tool, and what types should not be available? This complex of
questions is the "black box issue."
Various possible levels that one could imagine being or not being influ-
enceable by the student are: the tasks given to the student, the mathematical
objects and operations available in the tool, the representations being used,
and the mathematical topic being considered. If the designer wants a tool to
offer students the possibility to investigate questions that they ask them-
selves, the choice of task must not be "black," it should be accessible. (In
many drill-and-practice programs, this is not the case.) On the other hand, if
the designer wants a curriculum to be reflected in the tool, it must be the
curriculum that determines at least the mathematical topic to be dealt with,
and, in fact, much more than that, namely, an approach to the topic that is
consistent with the general philosophy of the curriculum. In this case, it is
insufficient to simply give the student a programming language or a spread-
sheet as tool. That does not mean that there are no good educational uses of
programming languages or spreadsheets in mathematics classes; but it does
mean that if a programming language or spreadsheet is to be used within a
given curriculum, it needs, in some way or other, to be invested with some
specific mathematics and some specific didactical approach. From here, the
208
COGNITIVE TOOLS
In the next subsection, one specific design issue will be discussed in more
detail in order to illustrate the dichotomy between general-purpose, mathe-
matically based software tools and didactically based learning environ-
ments.


TOMMY DREYFUS
black box issue leads to the question whether the specific mathematics and
the didactical approach should be internal or external to the software. And
this possibly depends not only on mathematical and didactical considera-
tions but also on organizational and economic ones.
Thus the black box issue appears to have no generally valid answer; it
must be dealt with after goals of instruction are set, that is, within the
framework of a curriculum. What, then, are the didactic considerations that
determine at what level the black box should be for any specific tool?
One may try to answer this question in terms of possible student activities
with the tool. Many didactically based learning environments are closed,
fixed, whereas the student activity is, at least potentially, open. Mathemat-
ically based tools such as spreadsheets, computer algebra systems, even
programming languages are also fixed; in this sense, the situation is in fact
quite parallel. Furthermore, a mathematically based tool allows one to create
within it. Similarly, within most computerized learning environments, the
student can create, namely, new problems and, in many cases, new mathe-
matical objects, such as functions, transformations, and so forth. A certain
number of these will naturally be available in any environment. In order to
give students the possibility to find out about the behavior of mathematical
objects in the domain they are investigating, most tools allow the creation of
additional objects and transformations (Thompson, 1985). The question is
thus not one of choosing between extendable and fixed tools. Rather it is:
What tools for creation are at the students' disposal? Are these tools suffi-
ciently flexible to allow for mathematical creativity on the part of the
students? Are they sufficiently specific to be useful to them? And how well-
designed are these tools from the didactic point of view?
Here the discussion of the black box issue returns to the dichotomy be-
tween mathematically and didactically based tools. For example, in a very
transparent tool such as Logo, distraction and lack of focus are likely to oc-
cur: The tools at the students' disposal are the Logo commands; these are
not very specific in terms of any mathematical concept. Therefore, students
might easily go off on a tangent when programming; they are likely to deal
with syntax questions ("where is the colon missing?") rather than with con-
ceptual ones. In an environment such as Graphic Calculus, on the other
hand, students may well be limited by the fact the the designer's choices do
not do justice to their ideas and ways of thinking. The environment may
force a certain way of thinking onto the students, thus limiting their creativ-
ity.
In summary, it might seem that, in terms of didactic efficacy, there are
advantages to custom-designing tools and making them didactically based:
They can be custom-made to give exactly the didactically "ideal" amount of
transparency. But the term didactically "ideal" is not a constant; it certainly
depends on the curriculum if not on the teacher and even the student.
Therefore, at present, this discussion remains inconclusive.
209


5. CONCLUSION
It is generally agreed that learning mathematics is not a spectator sport, but
requires active involvement on the part of the learner; for learning abstract
mathematical concepts, such activity is usefully described in terms of stu-
dent actions on mathematical objects and relationships; these objects and
relationships are necessarily given in some representation, which incorpo-
rates, or omits, links between them. The point has been made above that
computer tools have the potential to contribute to the learning process not
only as amplifiers (saving time on computations and making graphing easy
in the above example) but also, and more importantly, as reorganizers:
Mathematics itself becomes different for the learner; new tools change
cognition. Representations can be linked. Diagrammatic and qualitative ap-
proaches can be taken.
One of the central questions to be answered by any cognitive tool con-
cerns the cognitive appropriateness of these representations (Dörfler, in
press): What are the advantages and disadvantages of various representa-
tions for implementing a certain concept, certain aspects of a concept, or
certain relationships between concepts? For example, which representations
are appropriate to help a student learn about the notion of increase of a
function; and what needs to be the nature of linkage between the different
representations in the same tool in order to help the student to establish con-
nections between them with respect to the notion of increase? And how does
the nature of the concept generated in the student's mind, the concept image,
depend on these representations? These questions have both epistemological
and cognitive components; they are deep questions, requiring both theoreti-
cal and empirical investigation. Moreover, they are very complex questions:
Answers depend quite strongly on the intended student population, their
age, experience, mathematical maturity, and so forth.
While these questions are of central importance for judging the appropri-
ateness of a cognitive tool, they obviously cannot be investigated empiri-
cally without existing cognitive tools. Design and implementation of such
tools, didactically and mathematically based ones, is therefore a largely em-
pirical undertaking that continuously informs and is informed by progress
on the theoretical, epistemological, and cognitive research questions. Only
in the framework of a teaching-learning experiment can the didactic effec-
tiveness of a given tool be investigated. Only within a curriculum with its
specifically defined goals can one undertake the epistemological analysis
mentioned above. And only when the tool is actually used at least in a labo-
ratory situation with students can the corresponding cognitive analysis be
started. Given enough thought, effort, and time, such analyses can be ex-
pected to contribute to the resolution of the issues raised above such as the
black box issue and, more generally, the dichotomy between mathematically
and didactically based tools.
210
COGNITIVE TOOLS


TOMMY DREYFUS
Biehler, R. (in press). Software tools and mathematics education: The case of statistics. In
C. Keitel, & K. Ruthven (Eds.), Learning from computers: Mathematics education and

Download 5.72 Mb.

Do'stlaringiz bilan baham:
1   ...   81   82   83   84   85   86   87   88   ...   176




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling