Book · January 994 citations 110 reads 2,264 authors
Download 5.72 Mb. Pdf ko'rish
|
1994 Book DidacticsOfMathematicsAsAScien
Intelligent tutoring systems (pp. 109-142). Hillsdale, NJ: Erlbaum.
Wertheimer, R. J. (1990). The geometry proof tutor: An intelligent computer-based tutor in the classroom. Mathematics Teacher, 83, 308 - 317. Wenger, E. (1987). Artificial intelligence and tutoring systems. Los Altos, CA: Morgan Kaufmannn. 223 CHAPTER 5 Psychological research on mathematical learning, thinking, and instruction has accompanied the rise of didactics of mathematics as a scientific disci- pline since its very beginnings. In 1910, the German experimental psychol- ogist David Katz (1913) produced the volume Psychologie und mathematis- cher Unterricht (Psychology and Mathematical Instruction) commissioned by the ICME. Obviously, this research project had been initiated by Felix Klein. Chapters of Katz's book deal with topics like the development of the concept of space and number. The interest of mathematics teachers both in the nature of mathematical thinking, learning, and instruction and the methods psychologists use is also reflected by the Leipziger Lehrerverein (Leipzig Teacher Association) who founded and financed the "Institut für experimentelle Pädagogik and Psychologie" in 1906. One of the main outcomes of this institute is Freeman’s (1910) volume on children's and adults' conception of numbers. Note that Freeman's studies used rigorous laboratory and experimental pro- cedures. As is well-known, many mathematicians also theorized on mathematics R. Biehler, R. W. Scholz, R. Sträßer, B. Winkelmann (Eds.), Didactics of Mathematics as a Scientific Discipline, 225-230. © 1994 Dordrecht: Kluwer Academic Publishers. Printed in the Netherlands. PSYCHOLOGY OF MATHEMATICAL THINKING edited and introduced by Roland W. Scholz Bielefeld / Zürich INTRODUCTION TO CHAPTER 5 as a human activity. Using the method of introspection and referring to his own experience of creating mathematics, Poincaré (1910, 1914) and many other mathematicians dealt with psychological questions like insight or modes of thought in mathematical thinking. Thus, traditionally, one may find a close relation between epistemology and the theory of mathematical cognitions. The work of the psychologist who is most strongly associated with re- search on mathematical thinking, that is, Jean Piaget, was strongly influ- enced by Klein and Poincaré. For instance, when dealing with the question "What exactly is meant by geometrical intuition?" (Piaget, 1948/1963, p. 447), he discusses various definitions of intuition and intuitive thinking made by mathematicians. In some respects, research on mathematical thinking attained a new qual- ity through the constitution of the "International Group of Psychology in Mathematics Education" during ICME 3 in 1976 at Karlsruhe. Psychology in Mathematics Education (PME) was predominantely initiated by Ephraim Fischbein, Richard Skemp, and Hans Freudenthal in order to promote the exchange of scientific information in the field. Through approaching mathe- matical thinking from different perspectives, the research work of all three founders of PME was concerned with understanding qualities of mathemat- ical thinking. The object of understanding qualities of mathematical thinking and their dependance on types of (contextual) framing and representations, is still a main issue of current reseach in the PME community (see Goldin, 1992; Vergnaud, 1990). The relation between external and internal representation is, in some respects, the core linkage that brings cognitive psychology into mathematics education. Historically, there is a close relationship between the psychology of thinking and epistemology; thus one will find many cog- nitive issues being addressed in chapter 8 on history and epistemology of Download 5.72 Mb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling