Book · January 994 citations 110 reads 2,264 authors


Download 5.72 Mb.
Pdf ko'rish
bet142/176
Sana20.10.2023
Hajmi5.72 Mb.
#1712691
1   ...   138   139   140   141   142   143   144   145   ...   176
Bog'liq
1994 Book DidacticsOfMathematicsAsAScien

cultural techniques, terms that may compress what was outlined in Points 2
and 3 above. Altogether, if we add up the influence mathematics exerts on
the cultural and mental circumstances in society, we cannot but conclude
that mathematics is embedded in the material and immaterial infrastructure
of society. Thus, mathematics contributes in a thorough way to the shaping
of society, for better and for worse. (Further aspects of this are dealt with in
Niss, 1985, but a lot of research ought to be done to identify and analyse the
impact of mathematics on society in depth and detail.)
From a historical perspective, the rôle of mathematics in society has al-
ways been subject to change over time. At first sight, this change simply
consists in growth. Mathematics continues to become involved in still new
areas of activity in society. In so doing, it is often the case that mathematics
tends to penetrate and qualitatively transform the areas of activity in which
it occurs. The emergence and dissemination of computers constitutes an-
other kind of (recent) change in the rôle of mathematics in society. The rela-
tionship between mathematics and computers is a dual one: They are vehi-
cles for one another. Computers would hardly exist, and would definitely
not be so socially important, without mathematics as a fundamental prereq-
uisite for their design and functioning at all hard- and software levels. (This
is not to say, of course, that mathematics is the only fundamental prerequi-
site. We only need refer to microelectronics.) Conversely, computers offer
new opportunities for dealing with mathematical problems and tasks that
previously could not be handled properly. They also open avenues for simu-
lation, exploration and experimentation in and with mathematics that were
not at our disposal in former times. Thus, computers serve as extremely ef-
ficient, and sometimes even indispensable, tools and amplifiers for various
370


sorts of mathematical activity, but – and this is important – they do not
change the nature of mathematical work in principle. Computers amplify
the signal, they do not create it. Therefore, computers enhance the signifi-
cance of mathematics in society, but, contrary to widely held beliefs, they
do not replace it.
3
. THE INVISIBILITY OF MATHEMATICS
Against the background outlined in the previous sections, it is a striking fact
that although the social significance of mathematics seems to be ever in-
creasing in scope and density, the place, rôle and function of mathematics
are largely invisible to – and unrecognized by – the general public, decision
makers and politicians. Moreover, they are even invisible to many of those
who work in extra-mathematical fields that make extensive use of mathe-
matical models and modelling. Even quite a few mathematicians and math-
ematics educators seem to have fairly unclear pictures of the rôle of mathe-
matics in society as well.
This discrepancy between the objective social significance of mathemat-
ics and its subjective invisibility constitutes one form of what the author of-
ten calls the relevance paradox (Niss, 1979) formed by the simultaneous
objective relevance and subjective irrelevance of mathematics. The inherent
irony is stressed by the fact that the widespread subjective irrelevance of
mathematics does not prevent most societies from investing relatively visi-
ble amounts of resources in maintaining research, education and other activ-
ities in and with mathematics. This is undoubtedly based on the – subcon-
scious? – conviction that, ultimately, mathematics is essential to (at least)
the scientific, technological and material welfare of society.
Separate research is needed to investigate the causes of the relative invis-
ibility of mathematics in society. Probably the key to an explanation lies in
the fact that mathematics can never be found on the surface of the matters to
which attention is paid. It is always embedded in, is a direct or indirect pre-
requisite for, or is disguised by the matter "proper." For instance, insurance
premiums are given in terms of sums of money. The calculations behind are
difficult (and debatable) and not accessible to the lay person. Weather fore-
casts are presented to us as phenomenological statements, accompanied by
numerical indications of, say, expected temperature, wind direction and
speed. The enormous amount of expertise, mathematical modelling work
and computations on which the forecasts are based do not form part of the
presentation. Pin codes, strip codes, magnetic cards and so forth may have a
mathematical appearance (at least when we have forgotten our credit card
pin code), but convey no impression of the amount of sophisticated mathe-
matics that was involved in designing the systems, or of the coding and
cryptography problems that had to be solved. The same is true with the
mathematics hidden in the representation, condensation and transmission of
computerized pictures. Furthermore, we have often accustomed ourselves so
MOGENS NISS
371


MATHEMATICS IN SOCIETY
much to using items with an explicit mathematical content that we do not
think of them as having anything to do with mathematics. This is the case
when we buy wall paint to cover a certain area, when we estimate the time it
takes to perform an ordered sequence of actions (involving transportation),
when we cut and sew a skirt, when we decide whether or not to engage in an
investment venture such as buying a new car or a new house, or when we
prepare a seven-person meal following a cookery book recipe meant for
four persons.
With a whole lot of more complex matters that are on the agenda of pub-
lic political debates – for instance, unemployment, economic (in)equity,
immigration, planning of traffic systems, accident risks in industrial or
power plants, environmental changes and so forth and so on – it is
characteristic, on the one hand, that mathematical models form part of the
basis of the conclusions drawn by the specialists working in the area. On the
other hand, this is not at all taken into account in the public discourse,
mainly because it is largely unknown to the public, and the extent to which
it is not, is because the mathematics involved is then considered to be a
technical thing that does not interfere with the substance.
We could go on giving examples at all levels. Common to all of them is
that the mathematics involved lies in the background, belongs to their inte-
rior or foundation, not to their appearance. In one word, mathematics is in-
visible because it is hidden, not because it is absent. This is amplified –
again a bit of a paradox – by the fact that mathematics is general. It is pre-
sent – and often very unexpectedly so – in a remarkable variety of different
and in other ways unrelated contexts. Therefore mathematics hardly has a
territory of its own, well-defined in social terms, where we can go and find
it. Rather than being clearly located in the world, mathematics is more like
an all-permeating ether (though more real than the ether of 19th century
physics!). An additional aspect in the same vein is that most of those who
exercise mathematical activity in society, globally speaking, are not consid-
ered, neither by themselves nor by others, as mathematicians. They are sci-
entists in other fields, or engineers, architects, traffic planners, meteorolo-
gists, economists, insurance or banking people, forestry specialists, chemi-
cal plant designers and so forth. They appreciate the mathematics they make
use of but simply think of it as a necessary or convenient tool in the service
of purposes to which mathematics is of no independent interest. In this re-
spect, mathematics is invisible like the wood that we cannot see because of
all the trees. Another factor that tends to further disguise and hide the pres-
ence and function of mathematics in society is that information technology
is, in contrast, very visible indeed and often "steals the picture" from the
substance it dresses.
It is in its generality that the rôle of mathematics in the world differs from
that of almost any other discipline. This generality has two sides, the het-
erogeneity and width of the range of areas in which mathematics is acti-
372


vated, and the nature of this activation. Despite the diversity of areas, the
involvement of mathematics in them is founded on a relatively limited set of
general questions, approaches, theories, methods, results and techniques that
are basically the same in all contexts even if they are dressed in a continuum
of appearances. (This should not be taken to imply that mathematics as an
edifice is of limited size.) Of course other scientific disciplines – such as
physics, chemistry, biology, economics, philosophy, linguistics and so forth
– possess and display kinds of crucial generality as well, but within more
constrained (not to be mistaken for small) ranges.
4. MATHEMATICS EDUCATION IN SOCIETY: THREE PROBLEMS
If, for the occasion, we accept the sketch presented in the previous sections
as a fair description of the rôles of mathematics in society, an obvious issue
for further examination is the position of mathematics education in society.
Irrespective of its specific raison d'être, place and organization, education
is always embedded in a social context. Hence it is not disjoint from the
spheres of values and interests, or from ideological, political, economic and
cultural circumstances. It is necessary, therefore, to invoke the classical dis-
tinction between analytical considerations, which attempt to be neutral, ob-
jective and disinterested, and normative considerations, which involve or
presuppose values and standpoints, keeping in mind that the presence of
values and standpoints does not imply the absence of reason and argument.
In what follows, I shall begin by presenting elements of an analysis and
conclude by remarks of a normative nature.
If mathematics education is considered in a social context, whether from
an analytical or from constructive/normative (e.g., curricular) perspectives,
three interrelated problems emerge.
The first one, which I could call the justification problem, deals with the
reasons, motives and arguments for providing mathematics education to a
given category of students. In order words, it focuses on the question "why
mathematics education for this category of students?" Answers to this ques-
tion express the overall purposes and goals of mathematics education and
have to rely on and reflect perceptions of the rôle of mathematics in society,
of the philosophy of mathematics, the socioeconomic and cultural structure,
conditions and environment in society, ideological and political ideals, and
thus vary with place and time.
On the supposition that the justification problem has been settled, the

Download 5.72 Mb.

Do'stlaringiz bilan baham:
1   ...   138   139   140   141   142   143   144   145   ...   176




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling