Chiziqli tenglamalar sistemasini yechish usullari. Reja
Download 0.78 Mb.
|
Chiziqli algebra mustaqil Chiziqli tenglamalar sistemasini yechish usullari.
- Bu sahifa navigatsiya:
- Birlik matritsalar.
- Simmetrik matritsalar.
- Kososmmetrik matritsalar.
Uchburchak matritsalar.2 −9 3 8 0 0 D=[0 −5 6] C=[−2 1 0] 0 0 2 Diagonal matritsalar.6 −1 3
Skalyar matritsalar. 5 0 0 −4 0 0
A=[0 5 0] B=[ 0 0 5 Birlik matritsalar.0 −4 0 0 0 −4 ] 3-tartibli skalyar matritsalar. 1 0 1 0 0 0 1 A=[ ] B=[0 1 0] 0 0 1 Simmetrik matritsalar.A=[
3 9 2 −6 2 −7 3 1 5 ] B=[1 9 4] 5 4 7 Kososmmetrik matritsalar.−2 −1 5 9 3 −8 A=[ 1 5 6] D=[−3 7 −4] −5 −6 4 8 4 1 Berilgan matritsalarning o’lchamlarini va turlarini aniqlang. 2 4 1 1 −1 A=[ ] B=[0 1 2 2 −1 ] C=[0 3 4 2 0 0 0 ] D=[0 2 0 0] −1 0 2 1 0 3 1 2 0 0 4 0 0 3 0 0 0 0 8 Misol. A=[1 5 6] va 𝛼=4 uchun 𝛼 ·A ni aniqlang. 1 6 4 3 1 2 12 4 8 𝛼 · 𝐴=4· [1 5 6] = [ 4 20 24] 1 6 4 1 2 3 4 24 16 1 3 4 Misol .A=[2 1 4] ; B=[5 7 8] matritsalar uchun 2A+B ni hisoblang. 3 2 3 2 4 6 1 2 4 2 4 6 1 3 4 2 + 1 4 + 3 6 + 4
2A=[4 2 8] 2A+B=[4 2 8] +[5 7 8]=[4 + 5 2 + 7 8 + 8]= 6 4 6 Matritsalarni ko’paytiring. 6 4 6 3 [9 7 A=[1 0 −1] B=[ 2 1 0 0 −1 1 0 ] A· 𝐵 matritsani toping. −2 2 [1 0 −1] · [ 0 −1]= 2 1 0 1 0 −2 2 [1 · 0 + 0 · 1 + (−1) · (−2) 1 · (−1) + 0 · 0 + (−1) · 2] = [2 −3] 2 · 0 + 1 · 0 + 0 · (−2) 2 · (−1) + 1 · 0 + 0 · 2 1 −2 1 0 3 1 −1 A=[2 4 1] , B=[3] , C=[ 2 ] matritsalar va 𝛼=2 soni uchun 𝐴𝑇B+𝛼C 1 −4 2 2 matritsani aniqlang. 1 2 1 1 −1 −2
𝐴𝑇=[0 4 −4] 𝛼 ·C=2[ 2 ]=[ 4 ] , 3 1 2 1 2 1 2 1 1 1 · 1 + 2 · 3 + 1 · 2 9 𝐴𝑇𝐵=[0 4 −4] · [3]=[0 · 1 + 4 · 3 − 4 · 2]=[ 4 ] 3 1 2 2 3 · 1 + 1 · 3 + 2 · 2 10 9 −2 7
𝐴𝑇B+𝛼C=[ 4 ]+[ 10 4 ]=[ 8 ] 2 12 1 Misol. A=[4] va B=[2 4 1] uchun AB va BA ko’paytmalarni aniqlang. 3 1 1 · 2 1 · 4 1 · 1 2 4 1 AB=[4] · [2 4 1]=[4 · 2 4 · 4 4 · 1]=[8 16 4] 3 3 · 2 3 · 4 3 · 1 1 6 12 3 BA=[2 4 1] · [4]=2· 1 + 4 · 4 + 1 · 3 = 2 + 16 + 3 = 21 3 Berilgan A, B matritsalarning o’lchamlarini aniqlang va 𝑎13, 𝑎23, 𝑎21, 𝑏22, 𝑏12, 𝑏13, 𝑏23 elementlarini ko’rsating: A=‖ 2 4 1‖, B=‖0 2 1‖. −1 0 2 1 1 2 Berilgan A, B matritsalarning o’lchamlarini aniqlang va 𝑎13, 𝑎12, 𝑏31, , 𝑏22, , 𝑏32 4 −3 elementlarni ko’rsating: A=(1 2 3), B=‖1 2 ‖. 0 2 Matritsalar uchun ko’rsatilgan chiziqli amallarni bajariing. 1. A=‖1 5 2 −4 ‖ B=‖3 2‖ 2A-B=? 4 1 2. A=‖1 −1 −3‖ B=‖ 0 3 2‖ 3A-2B=? 2 1 5 −1 4 1 3. A=‖1 −2‖ B=‖ 3 2‖ 2A-B=? 2 −5 −3 2 4. A=‖ 1 −2 −3‖ B=‖3 −3 2 ‖ 3A-2B=? −1 1 5 1 4 −1
6. A=[3 5] B=[2 3 ] 2A+5B=? 4 1 1 −2
Foydalanilgan adabiyotlar: 1. Azlarov. T., Mansurov. X., Matematik analiz. T.: «O‘zbekiston». 1 t: 2005, 2 t . 1995 2. Fixtengols G. M. „Kurs differensialnogo i integralnogo ischeleniya“ M.: 1970. 3. Sa’dullayev A. va boshqalar. Matematik analiz kursi misol va masalalar to`plami. T., «O‘zbekiston». 1-q. 1993., 2-q. 1995. 4. Demidovich B. P. “Sbornik zadach i uprajneni po matematicheskomu analizu” T.: 1972. 5. Ilin V. A., Poznyak E. G. “Maematik analiz asoslari” I qism, T.: 1981. Download 0.78 Mb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling