Chiziqli tenglamalar sistemasini yechish usullari. Reja


Download 0.78 Mb.
bet10/10
Sana20.06.2023
Hajmi0.78 Mb.
#1634146
1   2   3   4   5   6   7   8   9   10
Bog'liq
Chiziqli algebra mustaqil Chiziqli tenglamalar sistemasini yechish usullari.

Uchburchak matritsalar.


2 −9 3 8 0 0
D=[0 −5 6] C=[−2 1 0]

0 0 2
  1. Diagonal matritsalar.


6 −1 3

2

0

0

6

0

0

A=[0

−1

0]

B=[0

9

0]

0

0

9

0

0

5




  1. Skalyar matritsalar.

5 0 0

−4 0 0


A=[0 5 0] B=[
0 0 5
  1. Birlik matritsalar.


0 −4 0
0 0 −4
] 3-tartibli skalyar matritsalar.

1 0 1 0 0

0 1
A=[ ] B=[0 1 0]
0 0 1
  1. Simmetrik matritsalar.


A=[
−8 3 −6


3 9 2
−6 2 −7
3 1 5
] B=[1 9 4]
5 4 7
  1. Kososmmetrik matritsalar.


−2 −1 5 9 3 −8
A=[ 1 5 6] D=[−3 7 −4]
−5 −6 4 8 4 1

Berilgan matritsalarning o’lchamlarini va turlarini aniqlang.


2 4 1
1 −1
A=[ ] B=[0 1
2 2 −1
] C=[0 3 4
2 0 0 0
] D=[0 2 0 0]

−1 0 2
1 0
3 1 2
0 0 4
0 0 3 0
0 0 0 8

Misol. A=[1 5 6] va 𝛼=4 uchun 𝛼 ·A ni aniqlang.
1 6 4
3 1 2 12 4 8
𝛼 · 𝐴=4· [1 5 6] = [ 4 20 24]

1 6 4
1 2 3
4 24 16
1 3 4

Misol .A=[2 1 4] ; B=[5 7 8] matritsalar uchun 2A+B ni hisoblang.

3 2 3
2 4 6
1 2 4
2 4 6
1 3 4
2 + 1 4 + 3 6 + 4


1

2 4

6 + 1

4 + 2

6 + 4

7

10










9

16]










6

10












2A=[4 2 8] 2A+B=[4 2 8] +[5 7 8]=[4 + 5 2 + 7 8 + 8]=

6 4 6
Matritsalarni ko’paytiring.
6 4 6
3
[9
7

A=[1 0 −1] B=[
2 1 0
0 −1
1 0

] A· 𝐵 matritsani toping.



−2 2

[1 0 −1] · [ 0 −1]=



2 1 0
1 0
−2 2

[1 · 0 + 0 · 1 + (−1) · (−2) 1 · (−1) + 0 · 0 + (−1) · 2] = [2 −3]
2 · 0 + 1 · 0 + 0 · (−2) 2 · (−1) + 1 · 0 + 0 · 2 1 −2

1 0 3 1 −1


A=[2 4 1] , B=[3] , C=[ 2 ] matritsalar va 𝛼=2 soni uchun 𝐴𝑇B+𝛼C

1 −4 2 2
matritsani aniqlang.
1 2 1
1

−1 −2


𝐴𝑇=[0 4 −4] 𝛼 ·C=2[ 2 ]=[ 4 ] ,
3 1 2 1 2
1 2 1 1 1 · 1 + 2 · 3 + 1 · 2 9
𝐴𝑇𝐵=[0 4 −4] · [3]=[0 · 1 + 4 · 3 − 4 · 2]=[ 4 ]
3 1 2 2 3 · 1 + 1 · 3 + 2 · 2 10

9 −2 7


𝐴𝑇B+𝛼C=[ 4 ]+[
10
4 ]=[ 8 ]
2 12

1
Misol. A=[4] va B=[2 4 1] uchun AB va BA ko’paytmalarni aniqlang.
3
1 1 · 2 1 · 4 1 · 1 2 4 1
AB=[4] · [2 4 1]=[4 · 2 4 · 4 4 · 1]=[8 16 4]

3 3 · 2 3 · 4 3 · 1
1
6 12 3

BA=[2 4 1] · [4]=2· 1 + 4 · 4 + 1 · 3 = 2 + 16 + 3 = 21
3

Berilgan A, B matritsalarning o’lchamlarini aniqlang va 𝑎13, 𝑎23, 𝑎21,


𝑏22, 𝑏12, 𝑏13, 𝑏23 elementlarini ko’rsating: A=2 4 1, B=0 2 1.
−1 0 2 1 1 2
Berilgan A, B matritsalarning o’lchamlarini aniqlang va 𝑎13, 𝑎12, 𝑏31, , 𝑏22, , 𝑏32
4 −3
elementlarni ko’rsating: A=(1 2 3), B=1 2 .
0 2
Matritsalar uchun ko’rsatilgan chiziqli amallarni bajariing.

1. A=1 5
2 −4
B=3 22A-B=?
4 1

2. A=1 −1 −3B=0 3 23A-2B=?


2 1 5 −1 4 1

3. A=1 −2B=3 22A-B=?


2 −5 −3 2



4. A=1 −2 −3B=3 −3 2
3A-2B=?

−1 1 5 1 4 −1





3

5

7

1

2

4




5.

A=[2

−1

0]

B=[ 2

3

−2]

A+B=?




4

3

2

−1

0

1







6. A=[3 5] B=[2 3
] 2A+5B=?

4 1 1 −2






3

5

7

1

2

4




7.

A=[2

−1

1]

B=[ 2

3

−1]

A+B=?




4

3

2

−1

1

1





Foydalanilgan adabiyotlar:
1. Azlarov. T., Mansurov. X., Matematik analiz. T.: «O‘zbekiston». 1 t: 2005, 2 t . 1995
2. Fixtengols G. M. „Kurs differensialnogo i integralnogo ischeleniya“ M.: 1970.
3. Sa’dullayev A. va boshqalar. Matematik analiz kursi misol va masalalar to`plami. T., «O‘zbekiston». 1-q. 1993., 2-q. 1995.
4. Demidovich B. P. “Sbornik zadach i uprajneni po matematicheskomu analizu” T.: 1972.
5. Ilin V. A., Poznyak E. G. “Maematik analiz asoslari” I qism, T.: 1981.
Download 0.78 Mb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8   9   10




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling