Chiziqli tenglamalar sistemasini yechish usullari. Reja


Yechish: Determinantni matritsa birinchi satr elementlari bo’ycha yoyib hisoblaymiz


Download 0.78 Mb.
bet9/10
Sana20.06.2023
Hajmi0.78 Mb.
#1634146
1   2   3   4   5   6   7   8   9   10
Bog'liq
Chiziqli algebra mustaqil Chiziqli tenglamalar sistemasini yechish usullari.

Yechish: Determinantni matritsa birinchi satr elementlari bo’ycha yoyib hisoblaymiz.


1 2 1
−2 3 0 3
0 −2


1 1
|0 −2 3|=1· | 3 1 1
|-2· |
3 1
|+1· |3 1 |=(-2· 1 − 1 · 3)-2(0· 1 − 3 ·

3)+(0· 1 + 3 · 2)=-5+18+6=19

Determinantning xossalari.


  1. xossa. Determinantning biror satr (ustuni) nollardan iborat bo’lsa, bu determinantning qiymati nolga teng.

𝑎11 𝑎12 𝑎13

[ 0 0 0
]=0

𝑎31 𝑎32 𝑎33

  1. xossa. Determinantning qiymatini biror songa ko’paytirish uning biror satri

(ustuni) elementlarini shu songa ko’paytirishga teng kuchli.
𝑎11 𝑎12 𝑎13 𝑎11 𝑎12 𝑎13
[𝑘𝑎21 𝑘𝑎22 𝑘𝑎23] = 𝑘 [𝑎21 𝑎22 𝑎23]
𝑎31 𝑎32 𝑎33 𝑎31 𝑎32 𝑎33

  1. xossa. Matritsani transponirlash natijasida uning determinantining qiymati

o’zgarmaydi , yani berilgan A matritsa uchun |𝐴| = |𝐴𝑇|.
𝑎11 𝑎12 𝑎13 𝑎11 𝑎21 𝑎31
[𝑎21 𝑎22 𝑎23]=[𝑎12 𝑎22 𝑎32]
𝑎31 𝑎32 𝑎33 𝑎13 𝑎23 𝑎33

  1. xossa. Determinantda ikkita satr yoki ikkita ustunning o’rni

almashtrilsa,determinantning qiymati o’z ishorasini almashtiradi.
𝑎11 𝑎12 𝑎13 𝑎21 𝑎22 𝑎23
[𝑎21 𝑎22 𝑎23]= [𝑎11 𝑎12 𝑎13]
𝑎31 𝑎32 𝑎33 𝑎31 𝑎32 𝑎33

  1. xossa.Ikkita bir xil satrga (ustunga) ega bo’lgan determinant nolga teng.

𝑎11 𝑎12 𝑎13
[𝑎11 𝑎12 𝑎13] = 0
𝑎31 𝑎32 𝑎33

  1. xossa.Determinantning ikkita satr (ustuni) o’zaro proportsional bo’lsa,bu determinantning qiymati nolga teng.

𝑎11 𝑎12 𝑎13
[𝑘𝑎11 𝑘𝑎12 𝑘𝑎13] = 0
𝑎31 𝑎32 𝑎33

  1. xossa. Agar determinantning biror satri (ustuni) to’laligicha ikki qo’shiluvchining yig’indisidan iborat bo’lsa , uning qiymatini ikkita determinantlar

qiymatlari yig’indisi tarzida hisoblash mumkin.

𝑎11 𝑎12 𝑎13
𝑎11 𝑎21 𝑎31
𝑎11 𝑎21 𝑎31

[𝑎21 + 𝑏1 𝑎22 + 𝑏2 𝑎23 + 𝑏3] = [𝑎12 𝑎22 𝑎32] + [ 𝑏1 𝑏2 𝑏3 ]

𝑎31 𝑎32 𝑎33
𝑎13 𝑎23 𝑎33
𝑎13 𝑎23 𝑎33

  1. xossa. Agar determinantnng biror satri elementlarini bir xil songa ko’paytirib

boshqa biror satrga qo’shilsa uning qiymati o’zgarmaydi.
𝑎11 𝑎12 𝑎13 𝑎11 𝑎12 𝑎13
[𝑘𝑎11 + 𝑎21 𝑘𝑎12 + 𝑎22 𝑘𝑎13 + 𝑎23] = [𝑎21 𝑎22 𝑎23]
𝑎31 𝑎32 𝑎33 𝑎31 𝑎32 𝑎33

  1. xossa. Matritsa biror satr elementlarini boshqa biror satr elementlarining algebraik to’ldiruvchilariga ko’paytmalarining yig’indisi nolga teng.

𝑎11𝐴31 + 𝑎12𝐴32+𝑎13𝐴33=0; 𝑎21𝐴31+𝑎22𝐴32+𝑎23𝐴33=0

  1. xossa. Kvadrat matritsalar ko’paytmasining determinant har bir matritsa determinantlari ko’paytmasiga teng,ya’ni |𝐴 · 𝐵| = |𝐴| · |𝐵|

Ixtiyoriy A va B kvadrat matritsalar uchun det(AB)=detA·detB
Sonli jadvallar(matritsa,determinant) elementlari ustidadagi elementar almashtirishlar deganda satr elementlarini biror songa ko’paytirib boshqa bir satrga qo’shish ,satrlar o’rnini almashtirish tushuniladi.

Determinantlarni hisoblash.


  1. Misol. Berilgan matritsaning determinantini hisoblang.

2 2 −1
A=( 2 −4 1 )
−2 −2 2

  1. usul. Determinantni ixtiyoriy satri yoki ustuni elementlari bo’yicha yoyib hisoblash teoremasidan foydalanamiz. Masalan, determinantni 3-ustun elementlari bo’yicha

yoyamiz
:[ 2 2 −1]=−1(−1)1+3 [ 2 −4] + 1(−1)2+3 [ 2 2 ] +

2 −4 1
−2 −2 −2
−2 −2
−2 −2

2(−1)3+3 [2 2
2 −4
] = −(−4 − 8) (−4 + 4) + 2(−8 − 4) = 12 − 0 − 24 = −12

  1. usul. Determinantni hisoblashning uchburchak qoidasidan foydalanamiz:

2 2 −1
[ 2 −4 1 ]=2· (−4) · 2 + 2 · 1 · (−2) + 2 · (−2) · (−1) 1 · (−4) ·
−2 −2 2
(−2)
2· 2 · 2 − (−2) · 1 · 2 = −16 − 4 + 4 − 8 + 8 + 4 = −12

  1. usul. Elementar almashtirishlar orqali determinantni biror satr yoki ustunni maksimal miqdorda nolli bo’lgan ko’rinishga keltiramiz va o’sha satr yoki ustun bo’yicha yoyamiz:

2 2 −1
[ 2 −4 1
−2 −2 2
]={1 − 𝑠𝑎𝑡𝑟𝑔𝑎 3 − 𝑛i 𝑞𝑜′𝑠ℎ𝑎𝑚i𝑧}=[
0 0 1
2 −4 1]=
−2 −2 2

{1 − 𝑠𝑎𝑡𝑟 𝑏𝑜𝑦i𝑐ℎ𝑎 𝑦𝑜𝑦𝑜𝑚i𝑧}=1(−1)1+3 [ 2 −4]=-4-8=-12
−2 −2

  1. usul. Elementar almashtirishlar orqali uchburchak ko’rinishga keltiramz:

2 2 1

[ 2 −4 1] {1 𝑠𝑎𝑡𝑟𝑛i 1𝑔𝑎 𝑘𝑜′𝑝𝑎𝑦𝑡i𝑟i𝑏, 2
−2 −2 2

2 2 −1


𝑠𝑎𝑡𝑟𝑔𝑎 𝑞𝑜′𝑠ℎ𝑎𝑚i𝑧𝑣𝑎 𝑛𝑎𝑡ij𝑎𝑛i 2 𝑠𝑎𝑡𝑟𝑔𝑎 𝑦𝑜𝑧𝑎𝑚i𝑧}=[ 0 −6 2 ]=
−2 −2 2
{1 − 𝑠𝑎𝑡𝑟𝑔𝑎 3 − 𝑛i 𝑞𝑜𝑠ℎ𝑎𝑚i𝑧 𝑣𝑎 𝑛𝑎𝑡ij𝑎𝑛i 3 − 𝑠𝑎𝑡𝑟𝑔𝑎 𝑦𝑜𝑧𝑎𝑚i𝑧} 2 2 −1
[ 0 −6 2 ] ={1 𝑠𝑎𝑡𝑟𝑔𝑎 3 𝑛i 𝑞𝑜′𝑠ℎ𝑎𝑚i𝑧 𝑣𝑎 𝑛𝑎𝑡ij𝑎𝑛i 3
−2 −2 2
𝑠𝑎𝑡𝑟𝑔𝑎 𝑦𝑜𝑧𝑎𝑚i𝑧} =
2 2 −1
[0 −6 2 ] ={𝑑i𝑜𝑔𝑎𝑛𝑎𝑙 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑙𝑎𝑟𝑛i 𝑘𝑜′𝑝𝑎𝑦𝑡i𝑟i𝑙𝑎𝑑i}=-12
0 0 1



𝐴
5-usul. A= 1 (𝐴ii · 𝐴jj − 𝐴ij · 𝐴ji) formulada i=1 va j=2 bo’lsin. 𝐴1122, 𝐴11,
iijj
𝐴22, 𝐴12, va 𝐴21, - algebraik to’ldiruvchilarini hisoblaymiz:

𝐴1122 = 2 ; 𝐴11 = [−4 1]=-8+2=-6 𝐴22 = [ 2 −1] = 4 − 2 = 2


−2 2 −2 2

𝐴12 = − [ 2 1] = −(4 + 2) = −6 𝐴21 = − [ 2 −1]=-(4-2)=-2


−2 2 −2 2
olingan natijalarni formulaga qo’yib, determinantning qiymatini topamiz:



A= 1
𝐴iijj
(𝐴ii · 𝐴jj − 𝐴ij · 𝐴ji)=1(-6· 2 − (−6)(−2)) = −12


2
Berilgan ikkinchi tartibli determinantlarni hisoblang.


1) [−7 6



] 2) [10 −5] 3).[10 −5] 4) [𝑎 + 𝑏 𝑎 𝑏]




5 −4
8 −8
9 −8
𝑎 − √𝑏 𝑎 + √𝑏

Berilgan uchinchi tartibli determinantni hisoblang.





2

3

4




𝑎

1

𝑎




5

3

2




1

−1

4

1)

[5

−2

1]

2)

[−1

𝑎

1]

3)

[−1

2

4]

4)

[3

−2

1 ]




1

2

3




𝑎

−1

𝑎




7

3

6




1

−1

−3

sin 𝑎

cos 𝑎

1

sin 𝑎

cos 𝑎

1

𝑐𝑡𝑔𝑏

𝑐𝑡𝑔𝑎

1

5) [sin 𝑏

cos 𝑏

1]

6) [sin 𝑏

cos 𝑏

0]

7) [𝑠i𝑛𝑎

𝑐𝑜𝑠𝑏

1]

sin 𝑦

cos 𝑦

1

sin 𝑦

cos 𝑦

0

𝑦

𝑦

1

Determinantning xossalaridan foydalanib, hisoblang.



1 2 3 4
− 1 − 1 − 1 − 1
1 2 0 − 3

1) [−9 − 9 − 9 − 9] 2) [
4 3 2 1
−1 − 2 − 4 − 8
−1 − 3 − 9 − 27
] 3) [
3 1 0 4 ]
1 5 − 1 7

1 0 1 0
−1 − 4 − 16 − 64
−2 1 0 1

𝖥3 − 1 2 − 1 11
I5 1 − 2 1 2I
4) I 9 − 1 1 3 4 I
I 3 0 6 − 1 3 I
[ 5 2 3 − 2 1 ]
𝖥3 − 1 2 − 1 11
I 5 1 − 2 1 2 I
5) I9 − 1 1 3 4I
I3 − 1 2 − 1 1 I
[ 5 2 3 − 2 1 ]



Nazorat misollari 1.Kvadrat matritsalarga misollar.


−1 3 3
9 2 6 3

A=[1 −6] B=[−1 2 4] С=[1 5 8 2]

2 4 8 7 1
3 2 1 4
1 0 3 0

Matritsalar mos ravishda 2-tartibli,3-tartibli,4-tartibli matritsalar deyiladi.

Download 0.78 Mb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8   9   10




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling