A B. Разберём, почему. Множество В состоит из элементов 1, 2, 5 и 6. В отличие от А, элементами которого являются 1, 6 и упорядоченная пара чисел (2, 5). Элементы обоих множеств качественно различны. Поэтому эти множества и не равны.
А = В. Элементами множества А являются числа 1 и 6, а также подмножество {2, 5}. Множество В также состоит из элементов 1 и 6, а также подмножества {5, 2}. Очевидно, что подмножества {2, 5} и {5, 2} равны. Следовательно множества А и В состоят из одних и тех же элементов. Значит, они равны.
A B. Оба множества имеют одинаковые элементы 1 и 6. Однако элементом А является подмножество {2, 7}, а элементом В есть упорядоченная пара чисел (2, 7). Понятно, что это качественно различные элементы. Следовательно, множества не равны.
A B. Множество А – это пустое множество, не содержащее ни одного элемента. В состав же множества В входит один элемент, которым является пустое множество.
A B. Множество А имеет один элемент – это число 0. Множество В также состоит из одного элемента, которым является множество, в данном случае пустое. Это качественно разные элементы.
Задачи для самостоятельного решения.
1. Записать следующие утверждения, используя символы теории множеств:
множество S есть подмножество Т;
х принадлежит множеству Р;
множество Y не является подмножеством множества Х;
z не принадлежит множеству Z.
2. Заданы четыре множества: А = {1, 3, 5, 7}; B = {3, 5}; C = {2}; D = {5, 7, 9}. Какие из следующих утверждений являются истинными, а какие ложными?
В А (ответ: верно);
D (ответ: неверно, хотя пустое множество и включено в D, но не в качестве его элемента, а в качестве подмножества);
Do'stlaringiz bilan baham: |