Grand Coulee Dam and the Columbia Basin Project usa final Report: November 2000


Table 4.4.2 Fish Passage Facilities at Major Dams of the Columbia River Basin


Download 5.01 Kb.
Pdf ko'rish
bet20/31
Sana08.10.2017
Hajmi5.01 Kb.
#17398
1   ...   16   17   18   19   20   21   22   23   ...   31

Table 4.4.2 Fish Passage Facilities at Major Dams of the Columbia River Basin  
Dam Year 
Dam 
Completed 
River 
Fish 
Passage 
 
 
 
Adult Juvenile 
Rock Island 
1933 
Mid-Columbia 
Yes 
Yes 
Bonneville  
1938 
Lower-Columbia 
Yes 
Yes 
Grand Coulee 
1942 
Upper-Columbia 
No 
No 
Chief Joseph  
1955 
Upper-Columbia 
No 
No 
McNary 1957 
Lower-Columbia 
Yes 
Yes 
The Dalles 
1957 
Lower-Columbia 
Yes 
Soon 
Brownlee 1959 
Snake 
No 
No 
Priest Rapids 
1959 
Mid-Columbia 
Yes 
Yes 
Rocky Reach 
1961 
Mid-Columbia 
Yes 
Yes 
Oxbow 1961 
Snake 
No 
No 
Ice Harbor 
1962 
Snake 
Yes 
Soon 
Wanapum 1964 
Mid-Columbia 
Yes 
Yes 
Hells Canyon 
1967 
Snake 
No 
No 
Wells 1967 
Mid-Columbia 
Yes 
No 
John Day 
1968 
Lower-Columbia 
Yes 
Yes 
Lower Monumental 
1969 
Snake 
Yes 
Yes 
Little Goose 
1970 
Snake 
Yes 
Yes 
Lower Granite 
1975 
Snake 
Yes 
Yes 
Source: University of Washington, 1999. 
 
In addition to their effect as physical barriers, the numerous dams in the Columbia River Basin impact 
salmon and steelhead habitat in a number of ways. First, reservoir creation often eliminates prime 
spawning habitat. Second, the system-wide operation of multi-purpose water projects in the basin has 
been geared towards maximising hydropower generation and flood protection. This has changed the 
river’s natural flow regime. The end result is a set of conditions that have adverse effects on juvenile 
outmigration. For example, dams slow river velocities, thus impeding the ability of the river to “help the 
fish along” in their passage to the sea. Delays during outmigration can have major effects on 
smoltification, the complex biological transformation that enables the fish to survive in a marine 
environment. If smoltification does not take place within a particular timeframe, the fish will not be able 
to survive in the ocean. Third, because of thermal storage in reservoirs, salmon and steelhead in the 
Columbia River system, which are cold-water fish, are exposed to higher than normal temperatures.
139
  
 
4.4.1.4 Habitat 
 
Habitat quantity and quality are both important in salmon and steelhead production. Dams in the basin 
have contributed significantly to habitat degradation, but they are not the only cause. Other practices
such as timber harvesting, wetland destruction, agricultural practices, and irrigation continue to decrease 
the availability of habitat. Table 4.4.3 lists important components of salmon and steelhead habitat. 
 
In addition to inland habitat, climate and ocean conditions also have a significant influence on salmon 
and steelhead health. In the past decade, scientists have become aware of the effect of El Nino-like 
climate shifts that can persist for several decades. These shifts, which increase seawater temperatures 
and interfere with upwelling, wind, and current transport, can have major effects on the marine food-
web, thereby influencing salmon survival at sea. Because of these ocean effects, the number of fish are 
produced in the rivers may be less influential than is widely believed, as these climate effects may 
preclude, and even confound, a lot of what are perceived to be fish recovery problems in rivers (Bennett 
1999). 
 
 

Grand Coulee Dam and Columbia Basin Project 
 
         93 
 
This is a working paper prepared for the World Commission on Dams as part of its information gathering activities. The views, conclusions, and 
recommendations contained in the working paper are not to be taken to represent the views of the Commission 
 
Table 4.4.3. Components of Salmon and Steelhead Habitat Quality 
• 
Water quality 
 
• 
Pool quality 
• 
Large woody debris 
supply 
• 
Water quantity 
• 
Habitat diversity 
• 
Water temperature, 
availability of shade 
• 
Flow regime 
 
• 
Sediment loading 
• 
Water velocity 
• 
Gravel quality 
• 
Instream cover 
 
• 
Bank stability 
• 
Gravel quantity 
 
• 
Overhead cover 
• 
Presence of under cut 
banks 
• 
Pool quantity 
 
• 
Riparian vegetation 
• 
Fish passage 
 
 
4.4.2  Larger Ecosystem Effects 
 
The role of salmon and steelhead in transferring nutrients from the Pacific Ocean to the Columbia River 
Basin is a relatively new subject of study. In the context of GCD, the nature of this nutrient transfer is 
summarised here.  
 
Before construction of GCD (and the two main-stem dams that preceded it, Rock Island Dam and 
Bonneville Dam), salmon migration to the upper basin involved a nutrient transfer because salmon were 
an important food source for other animals. Spawning and spawned-out salmon comprised an important 
source of nutrition for animals such as bears
140
 and eagles, effectively transferring nutrients from the 
ocean to the relatively sterile rivers and streams where the fish ultimately spawned. Bears ate the salmon, 
and they also recycled salmon-derived nutrients important to plant growth (eg, nitrogen and phosphorus) 
through their faeces (Olsen, 1998). Additionally, decaying salmon formed a nutrient base for organisms 
lower on the food chain that fed on decomposed fish bodies. The presence of an extensive dam system, 
including GCD and the other major projects in the basin, has severely compromised the traditional flow 
of nutrients to ecosystems in the upper basin region. Scientists are only beginning to unravel the 
implications of this alteration in nutrient flow. 
 
4.5  Cumulative Socioeconomic Impacts  
 
In the context of the Columbia River Basin, the significance of cumulative socioeconomic impacts of 
water resource development projects is undeniable. Indeed, the notion of cumulative effects is implicit in 
the Corps’ “308 Report,” which turned out to be the initial version of a master plan for water resource 
development projects on the main-stem within the US portion of the basin. The 308 report, which was 
named after House Document No. 308 of 1926 (US Congress, 1926) mandating detailed studies of the 
Columbia River Basin (among others), included two principal parts: a report by Major Butler for the 
portion of the Columbia River above the Snake, and one by Major Kuentz for the portion of the 
Columbia below the Snake (USACE, 1933). These reports paid a great deal of attention to the overall 
development of industry and agriculture within the US portion the basin. 
 
The significance of the reports by Butler and Kuentz is undeniable, particularly in light of the projects 
actually built.
141
 Indeed, the Corps modified and updated the original 308 report during the 1940s to 
maintain its viability as a long-range planning document. 
 
Manifestations of the cumulative socioeconomic impacts of water resources development in the 
Columbia River Basin are not difficult to find. Indeed, the timing of both irrigation developments and 
hydroelectric projects were intentionally sequenced to match the increasing demands for agricultural 
outputs and electricity. Collectively, these additions of hydroelectric power and irrigated acreage had an 
extraordinary impact on the overall development of the US Northwest. 

Grand Coulee Dam and Columbia Basin Project 
 
         94 
 
This is a working paper prepared for the World Commission on Dams as part of its information gathering activities. The views, conclusions, and 
recommendations contained in the working paper are not to be taken to represent the views of the Commission 
 
 
Another set of cumulative effects involves the influence of the CBP's agricultural outputs on farming 
activities in other parts of the US. While we were unable to identify studies of how subsidies for 
irrigation water to CBP growers allowed them to out-compete growers of similar crops in other parts of 
the country, several people we interviewed during the course of the study raised the issue. In particular, 
it appears to be common knowledge in Idaho that many potato farmers in that state — once one of the 
leading producers of potatoes in the US — shifted to other crops in the face of very stiff price 
competition from potato growers receiving CBP irrigation water. 
 
In addition to effects on US farmers outside the CBP area, the availability of subsidised irrigation water 
on the Columbia plateau has also affected farmers in BC. An analysis by W.R. Holm and Associates 
(1994: 84-90) examines the shift to growing higher valued crops on CBP lands in the period from 1962 
to 1992. In the investigation, the following five crops were considered: apples, potatoes, asparagus, 
onions, and grapes. According to Holm’s analysis, the shift to higher valued crops in this period meant 
increased competition for farmers in British Columbia who produced the same crops without the 
advantage of subsidised irrigation water. 
 
Relationships between cumulative socioeconomic impacts and cumulative ecosystem impacts  are also 
notable. Consider, for example, the links between incremental dam construction, effects on salmon 
migration, and consequent social and cultural impacts on upstream Indian tribes. As noted in Section 3.5, 
Rock Island and Bonneville dams were both completed before GCD, and the negative effects of Rock 
Island and Bonneville dam on salmon and steelhead migrations were notable. Debates on the impact of 
GCD on fisheries were influenced by the cumulative effects of these two earlier dams. In particular, 
during the mid-1930s, James O'Sullivan, executive secretary of the Columbia River Development 
League, countered critics of GCD concerned about salmon migration by referring to effects of the two 
earlier dams. O'Sullivan argued that as a result of the combined effects of Bonneville and Rock Island 
dams, only one half of one percent of the Columbia's salmon run would probably remain by the time 
those salmon that survived reached the Grand Coulee. He also argued that the commercial value of the 
salmon fishery was a small fraction of the value of outputs from dam construction on the Columbia 
River. As noted in previous sections, the decision to eliminate the upstream migration of salmon by 
constructing GCD had major cultural and social impacts on Native Americans in the US and First 
Nations in Canada. 
 
 
4.6 System Operations 
 
System-wide objectives, laws, and policies affecting all major projects in the Columbia River Basin 
largely govern GCD operations. Historically, the two dominant functions of the reservoir system, 
including GCD, have been hydropower and irrigation. After 1972, flood control was added as a major 
purpose of the project. Beginning with the 1980 Northwest Power Act, the major operational changes for 
GCD and other projects in the Columbia River system focused on the need to more adequately address 
requirements for maintaining and enhancing anadromous fish populations. In 1995, the NMFS biological 
opinion concerning the 1991/92 ESA listing of three species of endangered Snake River salmon heralded 
another change in project operations. According to interviews that we conducted with Reclamation and 
BPA staff (Jaren 1999; Rodewald 1999; McKay 1999), the NMFS biological opinion is the dominant 
factor now driving system operations. 
 
4.6.1  Major Changes in Operations Over Time 
 
Four major stages, characterised in Table 4.6.1, mark the evolution of GCD operations in its basin-wide 
context. At the time GCD was completed, the major focus of operation of federal dams in the Columbia 
River Basin was on power generation at the project level. Over time, more and more projects and project 
purposes were added, and operations moved from the individual project level to the system level. 
 

Grand Coulee Dam and Columbia Basin Project 
 
         95 
 
This is a working paper prepared for the World Commission on Dams as part of its information gathering activities. The views, conclusions, and 
recommendations contained in the working paper are not to be taken to represent the views of the Commission 
 
Between 1942 (the time of GCD completion) and 1948, GCD was operated primarily for hydropower-
generating purposes; no significant flood control was provided during that period. Between 1948 and 
1972, GCD was relied on more heavily for flood control, and power management in Columbia River 
system began shifting from a project specific to a system-wide focus; CBP also came on line. During this 
time, GCD was one of the major sources of power generation on the US side of the Columbia River 
Basin. The ability of GCD to play a role in significantly protecting against floods was limited until the 
Columbia River Treaty dams became operational in the early 1970s (Brooks 1999). Additionally, the 
completion of the Treaty dams in the US and Canada made significant hydropower optimisation 
possible.  
 
After 1973, power generation and flood control activities were managed at a basin-wide level. The 
environmental aspects for individual projects were managed under requirements for federal agencies to 
conduct environmental impact assessments under the National Environmental Policy Act (NEPA) of 
1969. The Northwest Power Act of 1980, the creation of the NPPC, and its 1983 fish and wildlife 
programme, marked the addition of anadromous fish concerns as a major basin-wide management issue 
(Rodewald 1999).  
 
Table 4.6.1. Stages of GCD Project Operations 
Time Period 
Characteristics 
1940s to 1950s 
-  Power generation at the project level 
1950s to early 1970s 
-  Power generation at the project level 
-  Flood control at the project level 
- Irrigation 
Early 1970s to early 
1980s 
-  Power generation at the system level 
-  Flood control at the system level 
- Irrigation 
-  Environmental impact mitigation at the project level 
Early 1980s to 
present 
-  Power generation at the system level 
-  Flood control at the system level 
- Irrigation 
-  Environmental impact mitigation at the system level 
(particularly for anadromous fish) 
 
In 1990, BPA, the Corps, and Reclamation used the environmental impact statement process under 
NEPA to conduct a joint review of 14 major projects in the basin (including the GCD) to develop an 
overall system operating strategy that would balance the varied, and sometimes conflicting, needs of all 
water users in the basin (see Table 4.6.2). For example, flood control requires reservoirs to be drawn 
down in early spring, whereas resident fish require stable reservoir levels year round. The final report, 
the  Columbia River System Operation Review Final Environmental Impact Statement, was issued in 
1995 and outlines the general system operating strategy for GCD that is used today (Jaren 1999; 
Rodewald 1999; MacKay 1999). 
 
Table 4.6.2. Optimal Conditions for Different Types of River Uses 
River Use 
Description 
Anadromous Fish 
Streamflows as close to “natural” river conditions as possible, with 
main-stem reservoirs well below spillway levels. 
Cultural Resources 
Stable reservoir elevations year round 
Flood Control 
Reservoirs drafted in early spring to capture snowmelt inflows 
Irrigation 
Full reservoirs during the growing season (March to September) 
Power 
Reduce or eliminate non-power operating constraints on the system 
Resident Fish 
Stable reservoirs year round, with natural river flows 
Recreation 
Full reservoirs during the summer (May–Oct) and stable downstream 
flows 
Water Quality 
Natural river flows with minimum spill 

Grand Coulee Dam and Columbia Basin Project 
 
         96 
 
This is a working paper prepared for the World Commission on Dams as part of its information gathering activities. The views, conclusions, and 
recommendations contained in the working paper are not to be taken to represent the views of the Commission 
 
Source: USDOE et al., 1995 (Main Report): 4-2.  
 
Because GCD is a large storage project relative to other projects in the basin, it plays a key role in 
system-wide operations concerning both power generation and flood control. The natural flow of the 
Columbia River is not well correlated with the temporal pattern of power demand. In the US Northwest, 
power demand is highest in the winter and lowest in the summer, whereas the natural flow pattern of the 
river would have high flows in the spring and summer and low flows in the winter. Thus, the purpose of 
large storage projects like GCD is to adjust the river’s natural flow pattern to mirror power demand more 
closely (DOE et al, 1992). This entails storing spring and summer snowmelt in reservoirs for eventual 
release in the fall and winter. For the most part, this pattern of reservoir operation is also compatible with 
flood control requirements, which require capturing spring and early summer runoff. However, at times, 
this operating strategy can be in direct conflict with operating requirements for other project purposes, 
such as recreation and flow augmentation for the maintenance of anadromous fish. 
 
Details of how GCD operates in relation to specific project purposes (eg, flood control, hydropower 
generation, and anadromous fish) are discussed in other sections of this report and in the Annex titled 
“System Operations — Hydropower, Flood Control, and Anadromous Fish Management Activities”. 
The discussion below concerns the general approach to operating GCD in light of all the project’s 
various purposes. 
 
4.6.2  Current GCD Operations 
 
Current GCD operations reflect trade-offs among various project purposes. For example, recreational 
users want reservoir elevation to be high in the summer, but this may conflict with flood control needs
which can call for elevations to be low in the summer to accommodate incoming runoff. For GCD, 
Reclamation develops operating requirements specific to irrigation at CBP, and BPA requests reservoir 
levels for power within those limits, given flood control constraints and anadromous fish needs.  
 
The three main functions that are managed on a system-wide basis in the Columbia River Basin are 
hydropower operations, flood control, and anadromous fish enhancement measures. The specific details 
of operations that pertain specifically to these functions are discussed in the Annex titled “System 
Operations — Hydropower, Flood Control, and Anadromous Fish Management Activities”. 
 
Besides power generation, flood control, irrigation, and anadromous fish, other major operational 
components of the project include resident fish and recreation. For irrigation, reservoir levels must be at 
a minimum level (1 240ft, or 327m) so that irrigation works function properly. While only about 3% of 
the river’s flow is withdrawn for irrigation at GCD, the combined effect of these withdrawals, along with 
other water uses, is important. Storing water in reservoirs to meet irrigation demands alters river flow for 
other uses (eg, flow augmentation) Irrigation activities for projects in FCRPS are managed on a project-
by-project basis, however, certain irrigation system requirements are taken into consideration when 
planning for system-wide operations. 
 
Table 4.6.3 illustrates the various constraints that determine how GCD is operated. For example, from 
January to April, flood control criteria dominate. Irrigation pumping runs from March to September, and 
the reservoir must be at or above a certain level to satisfy irrigation requirements. From May to 
September, the “Technical Management Team” (TMT), an interdisciplinary group representing the 
operating agencies (ie, the Corps, Reclamation, and BPA), NMFS, the tribes, and other groups working 
on anadromous fish conservation, convenes by teleconference weekly to determine how GCD operations 
might be conducted so as to enhance conditions for anadromous fish. Over the summer months, 
recreational interests desire the reservoir level to be around 1 285ft (339m). And in September and 
October, reservoir levels are supposed to be between 1 283ft (339m) and 1 285ft (339m) to enhance 
kokanee spawning. 
 

Grand Coulee Dam and Columbia Basin Project 
 
         97 
 
This is a working paper prepared for the World Commission on Dams as part of its information gathering activities. The views, conclusions, and 
recommendations contained in the working paper are not to be taken to represent the views of the Commission 
 
Table 4.6.3. Grand Coulee Dam Operating Constraints 
Month 
General Operating Constraints for Power 
January 
• 
Operate to higher of 1 260ft (333m) reservoir elevation or 85% 
confident of refill to flood control rule curve by 10 April  
February 
• 
Operate to higher of 1 260ft (333m) reservoir elevation or 85% 
confident of refill to flood control rule curve by 10 April  
March 
• 
Draft to higher of 1 240ft (327m) or 85% confident of refill to 
flood control rule curve by 10 April  
• 
Begin irrigation pumping 
April 
• 
Operate to flood control rule curve 
• 
Continue irrigation pumping 
• 
Inchelium Ferry out of service if reservoir elevation level less than 
1 225ft (323m) 
May 
• 
Target 1 240ft (327m) reservoir elevation level for irrigation 
pumping 
• 
Begin work of TMT 
• 
Spill Memorial day through 30 September for laser light show 
June 
• 
Refill to 1 285ft (339m) for recreation (can be overruled by TMT)  
• 
Continue TMT 
• 
Continue irrigation pumping  
• 
Continue spill for laser light show 
Download 5.01 Kb.

Do'stlaringiz bilan baham:
1   ...   16   17   18   19   20   21   22   23   ...   31




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling