Kirish Asosiy qism Funksiya tushunchasi va funksiyaning grafigi
Download 0.62 Mb.
|
Kirish Asosiy qism Funksiya tushunchasi. Chiziqli funksiyalar va
3- masala. funksiyaning grafigini yasang.
∆ 1) aniqlanish sohasi — noldan boshqa barcha haqiqiy sonlar; 2) funksiya toq, chunki x≠0 bo`lganda 3) funksiya x>0 oraliqda manfiy ko`rsatkichli darajali funksiyaning xossasiga ko`ra kamayadi, chunki 4) bo`lganda funksiya musbat qiymatlarni qabul qiladi; 5) grafikka tegishli bir nechta, masalan, nuqtalarni topib, ning qiymatlari uchun grafikni bir qismini yasaymiz va so`ngra simmetriya yordamida uchun qolgan qismini yasaymiz (4-rasm).∇ funksiyaning grafigi deyiladi. U deb ataluvchi ikki qismdan tuzilgan. Tarmoqlardan biri birinchi chorakda, ikkinchisi esa uchunchi chorakda joylashgan. 4-masala. bo`lganda funksiyaning grafigini yasang. ∆ Argumentning ayni bir xil qiymatlarida funksiyaning qiymatlari funksiya qiymatlarini 2 ga ko`paytirish bilan hosil qilinishini eslatamiz. Bu esa funksiyaning grafigi funksiya grafigini abssissalar o`qidan ordinate o`qi bo`ylab ikki barovar cho`zish bilan hosil qilinadi, demakdir (5-rasm). funksiyaning qiymatlari funksiya qiymatlaridan faqat ishorasi bilan farq qiladi. Demak, funksiyaning garfigi funksiya garfigiga abssissalar o`qiga nisbatan simmetrik (6-rasm).∇ Istalgan da funksiyaning grafigi ham deyiladi. Ular, agar bo`lsa, birinchi va uchunchi choraklarda, agar bo`lsa, ikkinchi va to`rtinchi choraklarda yotadi. (bunda ) funksiya funksiyaning barcha ega, chunonchi, bu funksiya: 1). bo`lganda aniqlangan; 2). Noldan boshqa barcha haqiqiy qiymatlarni qabul qiladi; 3). Toq funksiya; 4). bo`lganda qiymatlarni, bo`lganda qiymatlarni qabul qiladi; 5). bo`lgan oraliqlarda kamayadi. Agar bo`lsa, u holda funksiya 1-3-xossalarga ega bo`ladi; 4-5-xossalar esa bunday ifodalanadi: 4). bo`lganda qiymatlarni, bo`lganda qiymatlarni qabul qiladi; 5). bo`lgan oraliqlarda o`sadi. funksiya bo`lganda lar orasidagi ifoda qiladi deyiladi. 5-masala. funksiya grafigini yasang. ∆ funksiya grafigini (6-rasm) o`q bo`ylab o`ngga birlik va o`q bo`ylab ikki birlik pastga surish bilan funksiyaning grafigini hosil qilish mumkin (7-rasm).∇ Download 0.62 Mb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling