Статистическая гипотеза и статистический критерий. Ошибки 1-го и 2-го рода. Уровень значимости и мощность критерия. Принцип практической уверенности.
Определение. Статистической гипотезой называется любое предположение о виде или параметрах неизвестного закона распределения.
Различают простую и сложную статистические гипотезы. Простая гипотеза, в отличие от сложной, полностью определяет теоретическую функцию распределения СВ.
Проверяемую гипотезу обычно называют нулевой (или основной) и обозначают Н0. Наряду с нулевой гипотезой рассматривают альтернативную, или конкурирующую, гипотезу H1, являющуюся логическим отрицанием Н0. Нулевая и альтернативная гипотезы представляют собой 2 возможности выбора, осуществляемого в задачах проверки статистических гипотез.
Суть проверки статистической гипотезы заключается в том, что используется специально составленная выборочная характеристика (статистика) , полученная по выборке , точное или приближенное распределение которой известно.
Затем по этому выборочному распределению определяется критическое значение - такое, что если гипотеза Н0 верна, то вер-ть мала; так что в соответствии с принципом практической уверенности в условиях данного исследования событие можно (с некоторым риском) считать практически невозможным. Поэтому, если в данном конкретном случае обнаруживается отклонение , то гипотеза Н0 отвергается, в то время как появление значения , считается совместимым с гипотезой Н0, которая тогда принимается (точнее, не отвергается). Правило, по которому гипотеза Н0 отвергается или принимается, называется статистическим критерием или статистическим тестом.
Принцип практической уверенности:
Если вер-ть события А в данном испытании очень мала, то при однократном выполнении испытания можно быть уверенным в том, что событие А не произойдет, и в практической д-ти вести себя так, как будто событие А вообще невозможно.
Т.о., множество возможных значений статистики - критерия (критической статистики) разбивается на 2 непересекающихся подмножества:
Do'stlaringiz bilan baham: |