Классификация случайных событий. Классическое определе­


Download 1.88 Mb.
bet27/32
Sana14.04.2023
Hajmi1.88 Mb.
#1357666
1   ...   24   25   26   27   28   29   30   31   32
Bog'liq
Теория по математике 2

критическую область (область отклонения гипотезы) W и область допустимых значений (область принятия гипотезы) . Если фактически наблюдаемое значение статистики критерия попадает в критическую область W, то гипотезу Н0 отвергают. При этом возможны четыре случая:

Определение. Вероятность α допустить ошибку l-го рода, т.е. отвергнуть гипотезу Н0, когда она верна, называется уровнем значимости, или размером критерия.
Вероятность допустить ошибку 2-го рода, т.е. принять гипотезу Н0, когда она неверна, обычно обозначают β.
Определение. Вероятность (1-β) не допустить ошибку 2-го рода, т.е. отвергнуть гипотезу Н0, когда она неверна, называется мощностью (или функцией мощности) критерия.
Следует предпочесть ту критическую область, при которой мощность критерия будет наибольшей.

  1. Построение теоретического закона распределения по опыт­ным данным. Понятие о критериях согласия.

Одной из важнейших задач матем-кой статистики является установление теоретического закона распределения случайной величины, характеризующей изучаемый признак по опытному (эмпирическому) распределению, представляющему вариационный ряд.
Для решения этой задачи необходимо определить вид и параметры закона распределения.

  1. Предположение о виде закона распределения м.б. выдвинуто исходя из теоретических предпосылок, опыта аналогичных предшествующих исследований и, наконец, на основании графического изображения эмпирического распределения.

  2. Параметры распределения, как правило, неизвестны, поэтому их заменяют наилучшими оценками по выборке.

Критерии согласия отвечают на вопрос: объясняются ли расхождения между эмпирическим и теоретическим распределениями только случайными обстоятельствами, связанными с ограниченным числом наблюдений, или они являются существенными и связаны с тем, что теоретический закон распределения подобран неудачно.
Пусть необходимо проверить нулевую гипотезу Н0 о том, что исследуемая СВ Х подчиняется определенному закону распределения. Для проверки гипотезы Н0 выбирают некоторую СВ U, характеризующую степень расхождения теоретического и эмпирического распределений, закон распределения которой при достаточно больших n известен и практически не зависит от закона распределения СВ Х.
Зная закон распределения
Download 1.88 Mb.

Do'stlaringiz bilan baham:
1   ...   24   25   26   27   28   29   30   31   32




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling