Kudaybergenov k. K. Funksional analizdan misol va masalalar
Download 1.55 Mb. Pdf ko'rish
|
|| ≥ |x
n (t n ) − x m (t n )| ≥ 1, § 7.3. Kompakt operatorlar 281 ya’ni ||Ax n − Ax m || ≥ 1. Demak, A kompakt operator emas. 7.3.18. Agar A : C[0, 1] → C[0, 1] operatori Ax(t) = 1 Z 0 e ts x(s) ds kabi aniqlansa, u holda A kompakt operator bo‘ladimi? Yechimi. x n ∈ C[0, 1], ||x n || = 1 bo‘lsin. U holda Ax n (t) = 1 Z 0 e ts x n (s) ds = e t 1 Z 0 e s x n (s) ds. Agar a n = 1 Z 0 e s x n (s) ds deb belgilasak, u holda |a n | = | 1 Z 0 e s x n (s) ds| ≤ e, ya’ni {a n } chegaralangan sonli ketma-ketlik. Demak, uning yaqinla- shuvchi qismiy ketma-ketligi mavjud. U holda Ax n (t) = a n e t ham yaqinlashuvchi qismiy ketma-ketligiga ega. Demak, A kompakt operator ekan. 7.3.19. Agar A : C[0, 1] → C[0, 1] operatori Ax(t) = x(0) + tx(1) kabi aniqlansa, u holda A kompakt operator bo‘ladimi? Yechimi. x n ∈ C[0, 1], ||x n || = 1 bo‘lsin. Agar a n = x n (0), b n = x n (1) deb belgilasak, u holda |a n | ≤ 1, |b n | ≤ 1, 282 VII. Chiziqli operatorlar fazosi ya’ni {a n }, {b n } chegaralangan sonli ketma-ketliklar. Demak, {a n k }, {b n k } yaqinlashuvchi qismiy ketma-ketliklar mavjud. U holda Ax n (t) = a n k + tb n k ham C[0, 1] da norma bo‘yicha yaqinlashuvchi bo‘ladi. Bundan A kom- pakt operator ekan. Mustaqil ish uchun masalalar 1. A : C[0, 1] → C[0, 1] operatori (Af )(t) = 1 Z 0 K(t, s)f (s) ds + n X k=1 ϕ k (t)f (t k ) formula orqali aniqlansa, bunda K(t, s) – 0 ≤ t, s ≤ 1 kvadratda uzluk- siz, ϕ k (t) ∈ C[0, 1], t k ∈ [0, 1], k = 1, n. A kompakt operatori ekanligini isbotlang. 2. Hilbert fazosidagi har bir chegaralangan chiziqli operator kom- pakt operatorlar ketma-ketligining kuchli limiti ekanligini isbotlang. 3. H Hilbert fazosi, {e n } n∈N ortonormal bazisi va A : H → H chegaralangan operator. Agar ∞ P k=1 ||A(e n )|| 2 qator yaqinlashuvchi bo‘lsa, u holda A kompakt operator ekanligini isbotlang. 4. Kompakt operator qiymatlar sohasi separabelligini isbotlang. 5. H Hilbert fazosi, {e n } n∈N ortonormal bazisi va A : H → H kompakt operatori bo‘lsa, u holda ||A(e n )|| → 0 ekanligini isbotlang. 6. Har bir A : ` 2 → ` 1 chegaralangan chiziqli operatori kompakt ekanligini isbotlang. 7. A : C[0, 1] → C[0, 1] operatori (Af )(t) = 1 Z 0 K(t, s)f (s) ds formula orqali aniqlansa, bunda K(t, s) – 0 ≤ t, s ≤ 1 kvadratda uzluk- siz, u holda A chegaralangan teskari operatorga ega bo‘lisihi mumkinmi? 8 - 12 misollarda A : C[0, 1] → C[0, 1] kompakt operator bo‘ladimi? 8. Ax(t) = t R 0 x(s) ds; 9. Ax(t) = 1 R 0 x(s)|t − s| −1 ds; § 7.4. Integral operatorlar va tenglamalar 283 10. Ax(t) = 1 R 0 x(s)(t − s) −1 ds; 11. Ax(t) = 1 R 0 x(s)(t − s) −α ds; 12. Ax(t) = 1 R 0 x(s) tan(|t − s| −1/2 ) ds. 13. H Hilbert fazosi va A : H → H kompakt operator bo‘lsin. Agar x n w −→ x bo‘lsa, u holda ||Ax n − Ax|| → 0 ekanligini isbotlang. 14. H Hilbert fazosi va A : H → H kompakt operator bo‘lsin. Agar {e n } ⊂ H ortonormal sistema bo‘lsa, u holda Ae n → 0 ekanligini isbotlang. 7.4. Integral operatorlar va tenglamalar Agar funksional tenglamada noma’lum funksiya integral ishorasi os- tida qatnashsa, u holda bu tenglama integral tenglama deb ataladi. In- tegral tenglamadagi ifoda noma’lum funksiyaga nisbatan chiziqli bo‘lsa, u holda tenglama chiziqli integral tenglama deb ataladi. Endi chiziqli integral tenglamalarning ahamiyatli sinflaridan birini qaraymiz: ϕ(t) = λ b Z a K(t, s)f (s) ds + f (t) (7.17) ko‘rinishdagi tenglama II-tur Fredholm integral tenglamasi deyiladi. Bunda ϕ(t) noma’lum funksiya, f (t) va K(t, s) berilgan funksiyalar, λ sonli parametr. K(t, s) funksiyasi 0 ≤ t, s ≤ 1 kvadratda aniqlangan va u integral tenglamaning yadrosi deb ataladi. Agar K(t, s) funksiyasi b Z a b Z a K(t, s) dsdt < ∞ shartini qanoatlantirsa, u Hilbert – Shmidt yadrosi deb ataladi. b Z a K(t, s)f (s) ds = f (t) (7.18) tenglamasi I-tur Fredholm tenglamasi deyiladi. Agar K(t, s) funksiyasi s > t qiymatlarda K(t, s) = 0 tengligini qanoatlantirsa, u holda (7.17) 284 VII. Chiziqli operatorlar fazosi va (7.18) tenglamalar mos ϕ(t) = λ t Z a K(t, s)f (s) ds + f (t), (7.19) t Z a K(t, s)f (s) ds = f (t) (7.20) ko‘rinishlarga keladi. Bunday tenglamalar I va II Volterra tenglamalari deb ataladi. Agar yuqoridagi tenglamalarda K(t, s) = K(s, t) bo‘lsa, u holda ular simmetrik integral tenglamalar deyiladi. Integral tenglama yadrosi K(t, s) = n X i=1 a i (t)b i (s) ko‘rinishda bo‘lsa, u holda u aynigan yadro deyiladi. Faraz qilaylik, (7.17) tenglama aynigan yadroga ega bo‘lsin. U holda ϕ(t) = λ n X i=1 a i (t) b Z a b i (s)f (s) ds + f (t) (7.21) tenglamasiga ega bo‘lamiz. Bu tenglama yechimi ϕ = ϕ(t) funksiyasi bo‘lsin. Agar c i = b Z a ϕ(s)b i (s) ds, i = 1, n deb belgilasak, u holda (7.21) tenglamaning yechimi quyidagi ko‘rinishga keladi: ϕ(t) = f (t) + λ n X i=1 c i a i (t). (7.22) Bu tenglikni b i (t), i = 1, n funksiyasiga ko‘paytirib, [a, b] segmentda t o‘zgaruvchisi bo‘yicha integrallaymiz: b Z a ϕ(t)b i (t) = b Z a f (t)b i (t) + λ n X i=1 c j b Z a a j (t)b i (t) dt, i = 1, n. (7.23) § 7.4. Integral operatorlar va tenglamalar 285 Tenglikning o‘ng tomonidagi integrallar o‘zgarmas sonlar bo‘lib, ularni quyidagicha belgilaymiz: b Z a a j (t)b i (t) dt = k ij , i, j = 1, n, b Z a f (t)b i (t) = f i , i = 1, n. U holda (7.23) tenglama c i − λ n X j=1 k ij c j = f i , i = 1, n (7.24) ko‘rinishga keladi. Bu tenglamalar sistemasining c 1 , c 2 , · · · , c n yechim- larini (7.22) ga qoyib, (7.21) integral tenglama yechimiga ega bo‘lamiz. Agar (7.24) tenglamalar sistemasi yechimga ega bo‘lmasa, u holda (7.21) integral tenglama ham yechimga ega bo‘lmaydi. Integral tenglamalarni yechimini ketma-ket yaqinlashtirish usuli bi- lan topish mumkin. Faraz qilaylik, M = max a≤t,s≤b |K(t, s)| bo‘lsin. Agar |λ| < 1 M(b − a) bo‘lsa, u holda (7.21) tenglama yechimi uchun ϕ(t) = lim n→∞ ϕ n (t) tengligi bajariladi, bunda ϕ n+1 (t) = λ b Z a K(t, s)ϕ n (s) ds + f (t), n = 0, 1, 2, · · · . (7.25) ϕ 0 (t) funksiyasi sifatida [a, b] segmentda uzluksiz ixtiyoriy funksiyani olish mumkin. Agar (7.17), (7.18), (7.19) va (7.20) tenglamalarda f (t) = 0 bo‘lsa, u holda bir jinsli integral tenglama, aksincha, f (t) 6= 0 bo‘lsa, bir jinsli bo‘lmagan integral tenglamalar deyiladi. Xususiy holda, f (t) = t Z 0 ϕ(s) (t − s) α ds, (0 < α < 1, f (0) = 0) tenglama Abel tenglamasi deyiladi. 286 VII. Chiziqli operatorlar fazosi Masalalar 7.4.1. Agar A Hilbert – Shmidt operatorining yadrosi K(s, t) bo‘lsa, u holda A ∗ qo‘shma operatori K(t, s) yadroli Hilbert – Shmidt operatori ekanligini ko‘rsating. Yechimi. f, g ∈ L 2 [a, b] bo‘lsin. U holda hf, A ∗ gi = hAf, gi = b Z a b Z a K(s, t)f (t) dt g(s) ds = = b Z a b Z a K(s, t)f (t)g(s) dtds = b Z a b Z a K(s, t)g(s) ds f (t) dt = = b Z a f (t) b Z a K(s, t)g(s) ds dt = b Z a f (s) b Z a K(t, s)g(t) dt ds, ya’ni hf, A ∗ gi = b Z a f (s) b Z a K(t, s)g(t) dt ds. Bundan A ∗ g(s) = b Z a K(t, s)g(t) dt. Demak, A ∗ qo‘shma operatori K(t, s) yadroli Hilbert – Shmidt operatori bo‘ladi. 7.4.2. C[a, b] fazosida Af (t) = λ t Z a K(t, s)f (s) ds + ϕ(t) operatorning biror darajasi qisqartirib akslantirish ekanligini ko‘rsating. Yechimi. f, g ∈ C[a, b] bo‘lsin. U holda |Af (t) − Ag(t)| = |λ| ¯ ¯ ¯ ¯ ¯ ¯ t Z a K(t, s)[f (s) − g(s)] ds ¯ ¯ ¯ ¯ ¯ ¯ ≤ ≤ |λ|M(t − a) max a≤s≤b |f (s) − g(s)|, § 7.4. Integral operatorlar va tenglamalar 287 bunda M = max a≤t,s≤b |K(t, s)|. Bundan |A 2 f (t) − A 2 g(t)| ≤ |λ| 2 M 2 (t − a) 2 2 m, bunda m = max a≤s≤b |f (s) − g(s)|. Umuman, |A n f (t) − A n g(t)| ≤ |λ| n M n (t − a) n n! m. Demak, |λ| n M n (t − a) n n! < 1 tengsizlikni qanoatlantiradigan n soni uchun A n qisqartirib akslantirish bo‘ladi. 7.4.3. ϕ(t) = 2 1 Z 0 (1 + ts)ϕ(s) ds + t 2 aynigan yadroli tenglamani yeching. Yechimi. Berilgan tenglamani ϕ(t) = 2 1 Z 0 ϕ(s) ds + 2t 1 Z 0 sϕ(s) ds + t 2 ko‘rinishda yozib, c 1 = 1 Z 0 ϕ(s) ds va c 2 = 1 Z 0 sϕ(s) ds deb belgilasak, u holda ϕ(t) = 2c 1 + 2c 2 t + t 2 . Endi c 1 va c 2 noma’lumlarni topamiz: c 1 = 1 Z 0 ϕ(t) dt = 1 Z 0 (2c 1 + 2c 2 t + t 2 ) dt = 2c 1 + c 2 + 1 3 , ya’ni c 1 + c 2 = −13. Xuddi shunday c 2 = 1 Z 0 tϕ(t) dt = 1 Z 0 (2c 1 t + 2c 2 t 2 + t 3 ) dt = c 1 + 2 3 c 2 + 1 4 , 288 VII. Chiziqli operatorlar fazosi ya’ni c 1 − 13c 2 = −14. Demak, biz quyidagi chiziqli tenglamalar sis- temasiga ega bo‘ldik: ( c 1 + c 2 = −13, c 1 − 13c 2 = −14. Bu tenglama yechimlari: c 1 = −13 48, c 2 = − 1 16. U holda integral tenglama yechimi ϕ(t) = t 2 − 1 8 t − 13 24 funksiyasi bo‘ladi. 7.4.4. ϕ(t) = π 2 Z 0 sin t cos sϕ(s) ds + sin t aynigan yadroli tenglamani yeching. Yechimi. Berilgan tenglamani ϕ(t) = sin t π 2 Z 0 cos sϕ(s) ds + sin t ko‘rinishda yozib, c = π 2 Z 0 cos sϕ(s) ds deb belgilasak, u holda ϕ(t) = (1 + c) sin t. Endi c noma’lumni topamiz: c = π 2 Z 0 ϕ(t) dt = π 2 Z 0 (1 + c) cos t sin tϕ(t) dt = 1 + c 2 , ya’ni c = 1 + c 2 . Bundan c = 1. U holda integral tenglama yechimi ϕ(t) = 2 sin t funksiyasi bo‘ladi. 7.4.5. ϕ(t) = π Z 0 sin t cos sϕ(s) ds + sin t § 7.4. Integral operatorlar va tenglamalar 289 aynigan yadroli tenglamani yeching. Yechimi. Berilgan tenglamani ϕ(t) = sin t π Z 0 cos sϕ(s) ds + sin t ko‘rinishda yozib, c = π Z 0 cos sϕ(s) ds deb belgilasak, u holda ϕ(t) = (1 + c) sin t. Endi c noma’lumni topamiz: c = π Z 0 ϕ(t) dt = π Z 0 (1 + c) cos t sin tϕ(t) dt = 0, ya’ni c = 0. U holda integral tenglama yechimi ϕ(t) = sin t funksiyasi bo‘ladi. 7.4.6. ϕ(t) = 1 2 1 Z 0 tsϕ(s) ds + 3t 4 integral tenglamani ketma-ket yaqinlashtirish usuli yor- damida yeching. Yechimi. ϕ 0 (t) = 0 deb olib, (7.25) formula bo‘yicha quyidagilarga ega bo‘lamiz: ϕ 1 (t) = t 2 1 Z 0 sϕ 0 (s) ds + 3t 4 = 3t 4 , ϕ 2 (t) = t 2 1 Z 0 s 3s 4 ds + 3t 4 = 3t 4 (1 + 1 6 ), ϕ 3 (t) = t 2 1 Z 0 s 3s 4 (1 + 1 6 ) ds + 3t 4 = 3t 4 (1 + 1 6 + 1 6 2 ), · · · · · · · · · · · · · · · · · · · · · · · · · · · 290 VII. Chiziqli operatorlar fazosi ϕ n (t) = 3t 4 (1 + 16 + 1 6 2 + · · · + 1 6 n−1 ) = 9t 10 (1 − 1 6 n ). U holda ϕ(t) = lim n→∞ ϕ n (t) = lim n→∞ 9t 10 (1 − 1 6 n ), ya’ni ϕ(t) = 9t 10. 7.4.7. ϕ(t) = t Z 0 (s − t)ϕ(s) ds + t II-tur Volterra tenglamasini yeching. Yechimi. Berilgan tenglama yechimini quyidagi ϕ(t) = ϕ 0 (t) + ϕ 1 (t) + · · · + ϕ n (t) + · · · funksional qator ko‘rinishda izlaymiz. No‘malum ϕ 0 (t), ϕ 1 (t), · · · , ϕ n (t), · · · funksiyalarni aniqlaylik: ϕ(t) = ϕ 0 (t) + ϕ 1 (t) + · · · + ϕ n (t) + · · · = (7.26) = t + t Z 0 (s − t)ϕ 0 (s) ds + t Z 0 (s − t)ϕ 1 (s) ds + · · · + Download 1.55 Mb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling