Курсовая работа Методика обучения решению неравенств младших школьников в рамках альтернативных программ


§ 2. Характеристика понятия неравенства. Неравенства с одной переменной


Download 291.13 Kb.
bet3/18
Sana19.06.2023
Hajmi291.13 Kb.
#1609266
TuriКурсовая
1   2   3   4   5   6   7   8   9   ...   18

§ 2. Характеристика понятия неравенства. Неравенства с одной переменной


Пусть а и b – два числовых выражения. Соединим их знаком ">" (или <). Получим предложение a > b (или a < b), которое называют числовым неравенством.


Например, если соединить выражение 6 + 2 и 13-7 знаком «>», то получим истинное числовое неравенство 6 + 2 > 13 - 7. Если соединить те же выражения знаком «<», получим ложное числовое неравенство 6 + 2 < 13 - 7. Таким образом, с логической точки зрения числовое неравенство - это высказывание, истинное или ложное.
Знаки неравенства (<, >) появились в начале XVII столетия, ввел их английский математик Гариот. И хотя знаки >, < появились не так давно, сами понятия неравенства возникли в глубокой древности.
Неравенства, которые записываются с помощью знаков > и <, называются строгими неравенствами, а неравенства, в записи которых участвуют знаки и , - нестрогими.
Нестрогое неравенство эквивалентно строгому неравенству того же знака и равенству.
Различают два вида неравенств: арифметические (или числовые), в записи которых участвуют только числа, и неарифметические, в записи которых наряду с числами участвуют функции одной или нескольких переменных.
Например, числовыми неравенствами будут 2 > 1, 7.
Неарифметическими неравенствами, например, будут неравенства а < 1, х2 + у2 R2
Функции, входящие в неравенства, могут принимать различные числовые значения в зависимости от различных значений своих аргументов. При одних значениях аргументов неравенство может обратиться в верное числовое неравенство, при других - нет.
Числовые неравенства обладают рядом свойств. Рассмотрим некоторые.
1. Если к обеим частям истинного числового неравенства прибавить одно и то же числовое выражение, имеющее смысл, то получим также истинное числовое неравенство.
2. Если обе части истинного числового неравенства умножить на одно и то же числовое выражение, имеющее смысл и положительное значение, то получим также истинное числовое неравенство.
3. Если обе части истинного числового неравенства умножить на одно и то же числовое выражение, имеющее смысл и отрицательное значение, а также поменяем знак неравенства на противоположный, то получим также истинное числовое неравенство.
Предложения 2х + 7 > 10 – х, x2 + 7х < 2, (х + 2)(2х – 3) > 0 называют неравенствами с одной переменной.
В общем виде это понятие определяют так:
Определение. Пусть f(x) и g(х) - два выражения с переменной х и областью определения X. Тогда неравенство вида f(x) > g(х) или f(x) < g(х) называется неравенством с одной переменной. Множество X называется областью определения.
Значение переменной х из множества X, при котором неравенство обращается в истинное числовое неравенство, называется его решением. Решить неравенство - это значит найти множество его решений.
Так, решением неравенства 2х + 7 > 10 – х, х R является число х = 5, так как 2∙5 + 7 > 10 – 5 – истинное числовое неравенство. А множество его решений - это промежуток (1,∞), который находят, выполняя преобразование неравенства: 2х + 7 > 10 – х => Зх > 3 => х > 1.
В основе решения неравенств с одной переменной лежит понятие равносильности.
Определение. Два неравенства с одной переменной называются равносильными, если их множества решений равны.
Например, неравенства 2х + 7 > 10 и 2х > 3 равносильны, так как их множества решений равны и представляют собой промежуток ( ⅔, ∞).
Теоремы о равносильности неравенств и следствия из них аналогичны соответствующим теоремам о равносильности уравнений. При их доказательстве используются свойства истинных числовых неравенств.

Download 291.13 Kb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8   9   ...   18




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling