Maple dasturi yordamida aniqmas va aniq integrallarni hisoblash


F:=unapply(int(f(x),x),x): C:=A-F(a): int(f(x),x)+C


Download 439.9 Kb.
bet4/9
Sana27.03.2023
Hajmi439.9 Kb.
#1298592
1   2   3   4   5   6   7   8   9
Bog'liq
Aniqmas integral

F:=unapply(int(f(x),x),x):


  • C:=A-F(a):
  • int(f(x),x)+C;


    1. Quyidagi bo’lakli funksiyalarning boshlang’ich funksiyasini Maple muhitida toping va uning grafigini chizing.



    1

    𝑓(𝑥) = |1 + 𝑥| |1 − 𝑥|





    10

    sin 𝑥 , 𝑥 < 0
    𝑓(𝑥) = {𝑥 + 1, 0 ⩽ 𝑥 ⩽ 1
    𝑒𝑥 , 𝑥 > 1

    2

    𝑓(𝑥) = |2𝑥 − 7| + |3 − 8𝑥|

    11

    ( ) 1 − 𝑥2, |𝑥| ⩽ 1
    𝑓 𝑥 = {1 − |𝑥|, |𝑥| > 1

    3

    |𝑥| |𝑥2 − 4|
    𝑓(𝑥) = |𝑥 − 9|

    12

    max(𝑥2 − 4, 𝑥) , 𝑥 < 0
    𝑓(𝑥) = {
    min(𝑥2 − 9, 𝑥) , 𝑥 ≥ 0

    4

    𝑓(𝑥) = min(𝑥, 𝑥3 − 𝑥)

    13

    |2𝑥 + 9|𝑒𝑥, 𝑥 < 0
    𝑓(𝑥) = {
    𝑥2 − sin 𝑥 , 𝑥 ≥ 0

    5

    𝑓(𝑥) = max(𝑥 − 5,7 − 𝑥)

    14

    𝑓(𝑥) = sign𝑥 + |𝑥|

    6

    𝑓(𝑥) = min(|𝑥 − 6|, 6)

    15

    𝑥 − 9
    𝑓(𝑥) = sign(2𝑥 − 8) + | |
    𝑥



    7

    𝑓(𝑥) = [𝑥] max(2𝑥 − 5, 7 − 5𝑥)





    16

    𝑥 sin 𝑥 , 𝑥 < 0
    𝑥𝑒𝑥 , 0 ⩽ 𝑥 < 10
    𝑓(𝑥) = { ln 𝑥 + 12 , 10 < 𝑥 ⩽ 20
    max(𝑥2 − 4,3𝑥) , 𝑥 > 20

    8

    𝑓(𝑥) = |[𝑥] − 9|

    17

    𝑥 + sign𝑥, 𝑥 ∈ [−10,2)
    𝑓(𝑥) = { ( ) 4
    𝜒[2,8] 𝑥 𝑥 , 𝑥 ≥ 2

    9

    𝑓(𝑥) = 𝜒[−1,1](𝑥)

    18

    𝑓(𝑥) = 𝜒[2,8](𝑥 − 9)



    Eslatma: A to’plamning xarakteristik funksiyasi quyidagicha ta’riflanadi:



    𝜒A(𝑥) =


    1, 𝑥 ∈ A

    0, 𝑥 ∉ A


    𝗅

    1. Quyidagi funksiyalarning boshlang’ich funksiyalarini darajali qator ko’rinishda dastlabki 5 – qo’shiluvchigacha aniqlang.

    1

    sin 2𝑥
    𝑓(𝑥) =
    𝑥

    5

    𝑥100
    𝑓(𝑥) =
    ln 𝑥

    9

    𝑓(𝑥) = sin(𝑥)𝑒𝑥

    2

    𝑥2
    𝑒 2
    𝑓(𝑥) =
    2π

    6

    𝑓(𝑥) = 𝑒𝑥 ln|𝑥|



    10

    𝑥2
    𝑓(𝑥) = 𝑥𝑒 2

    3

    5
    𝑓(𝑥) =
    ln 5𝑥

    7

    1
    𝑓(𝑥) =
    √1 − 𝑘2 sin2 𝑥

    11

    𝑓(𝑥) = 𝑒sin𝑥



    4

    𝑥
    𝑓(𝑥) =
    cos 𝑥



    8

    1
    𝑓(𝑥) =
    (1 + 2 sin2 𝑥)1 − sin2 𝑥
    4



    12

    𝑓(𝑥) = sin(𝑐𝑜𝑠 𝑥)






    1. Maple muhitida aniqmas integrallarni hisoblash funksiyalaridan foydalanib, quyidagi misollarni to’liq tahlil qiling.(Integralni uch xil usulda hisoblang(bevosita, bo’laklab, o’zgaruvchini almashtirib); ko’rsatilgan nuqtadan o’tuvchi boshlang’ich

    funksiyasini topib, grafigini chizing; boshlang’ich funksiyani darajali qator ko’rinishda aniqlang).

    1

    ln 𝑥
    𝑦 =
    𝑥

    7

    3
    𝑥 + 2
    𝑦 = 3
    𝑥 + 𝑥 + 2

    13

    𝑦 = 𝑥 ln 𝑥



    2



    𝑦 = sin 𝑥 + cos 𝑥

    8

    𝑦 = 𝑒𝑥 + 𝑒2𝑥 cos 𝑥



    14

    𝑦 = 𝑥ln 𝑥

    3

    𝑦 = tg 𝑥



    9

    𝑥2
    𝑦 = 9
    𝑥4 + 3𝑥3 + 𝑥2 + 3𝑥 + 1
    2

    15

    1
    𝑦 = 3
    (1 + 4𝑥) 𝑥

    4

    𝑒ln 𝑥
    𝑦 =
    𝑥

    10

    1
    𝑦 = (1 + 𝑥)(1 + 𝑥2)(1 + 𝑥3)

    16

    𝑦 = cos5 𝑥



    5

    𝑥
    𝑦 =
    1 + 𝑥2

    11

    𝑦 = sin(cos 𝑥) sin 𝑥



    17

    𝑦 = sin4 𝑥 cos5 2𝑥



    6

    𝑦 = sin 𝑥 ∙ ln(ctg𝑥)



    12

    1
    𝑦 =
    1 + 𝑥

    18

    2
    𝑦 =
    sin 𝑥 − cos 𝑥






    𝑓(𝑥) funksiya [𝑎; P] segmentda aniqlangan va 𝓪 = 𝑥𝟎 < 𝑥𝟏 < 𝑥𝟐 < ⋯ < 𝑥𝒏 = P bo’lsin. U holda 𝑓(𝑥) funksiyaning [𝑎; P] segmentdagi integrali deb quyidagi songa aytiladi:

    P
    ∫ 𝑓(𝑥)𝑑𝑥 = lim
    max|∆𝓍𝑖|→0
    𝑎
    𝑛−1
    ∑ 𝑓(𝜉𝑖) ∆𝓍𝑖
    𝑖=0

    bunda 𝑥𝒊 ⩽ 𝝃𝒊 ⩽ 𝑥𝒊+𝟏 va ∆𝑥𝒊 = 𝑥𝒊+𝟏 − 𝑥𝒊. Funksiyaning segmentdagi bu kabi aniqlangan integrali uning shu segmentdagi aniq integrali deb ham ataladi.
    𝑓(𝑥) funksiyaning aniq integraliga tegishli ayrim tushunchalarni keltirib o’tamiz:
    1)
    𝑛−1
    𝖲 = ∑ 𝑚𝑖 ∆𝓍𝑖
    𝑖=0
    yig’indi 𝑓 funksiyaning quyi yoki o’ng integral yig’indisi deyiladi.
    2)

    𝑛−1
    𝖲 = ∑ 𝑀𝑖 ∆𝓍𝑖
    𝑖=0
    yig’indi esa 𝑓 funksiyaning yuqori yoki chap integral yig’indisi deyiladi.
    3)


    𝑛−1
    𝖲 = ∑ ℋ𝑖 ∆𝓍𝑖
    𝑖=0
    yig’indi 𝑓 funksiyaning o’rta integral yig’indisi deb ataladi. Bularda

    𝑚𝑖
    = inf
    𝓍𝑖⩽𝑥⩽𝓍𝑖+1
    𝑓(𝑥) , 𝑀𝑖
    = sup
    𝓍𝑖⩽𝑥⩽𝓍𝑖+1
    𝑓(𝑥) ,
    𝓍𝑖 + 𝓍𝑖+1
    𝑖 = 𝑓 ( 2 )

    Bunday olib qaralganda bu integral yig’indilar berilgan funksiyaning grafigi bilan chegaralangan egri chiziqli trapetsiyada saqlanuvchi, uni o’zida saqlovchi va orasida yotuvchi to’g’ri to’rtburchakchalar yuzalari yig’indisini ifodalaydi. Buni quyidagi chizmalarda ko’rish mumkin:



    Maple dasturi yordamida bularni quyidagi funksiyalar orqali aniqlaymiz:



    1. int(f(x),x=a..b); buyrug’i f funksiyaning [a;b] dagi aniq integralini hisoblaydi.

    >restart;


    >int(x^3,x=-1..3);



    >int(x*ln(x),x=1..t);


    >int(mu(x),x=a..b);
    20


    1 t2 ln( t )  1 t21
    2 4 4

    >Int(sin(x),x=-Pi..Pi);


    b


    ( x ) dx
    a





    sin( x ) dx
    

    >Int((1+x-1/x)*exp(x+1/x),x=1/2..2)=int((1+x- 1/x)*exp(x+1/x),x=1/2..2);


    2
    x 1


    e




    1/2
    1 x

    1
    x
    x dx 3 e( 5/2 )
    2

    >int(abs(x-2),x=0..2);


    2

    >Diff(Int(sin(x^2),x=a..b),a)=diff(int(sin(x^2),x=a..b),a);





    b
    sin( x2 ) dx  sin( a2 )
    a
    a
    >Limit(Int(cos(t^2),t=0..x)/x,x=0)=limit(int(cos(t^2),t=0..x)/x,x=0);
    x


    cos( t2 ) dt

    lim 0  1
    x  0 x



    1. leftsum(f(x),x=a..b); leftsum(f(x),x=a..b,n); rightsum(f(x),x=a..b); yoki rightsum(f(x),x=a..b,n); middlesum(f(x),x=a..b); middlesum(f(x),x=a..b,n);

    buyruqlari mos ravishda f funksiyaning [a;b] dagi yuqori, quyi va o’rta integral yig’indilarini hisoblaydi. Bunda n to’g’ri to’rtburchaklar (yoki [a;b] kesmaning bo’linishlari soni) soni. Maple bu yig’indilarni kompleks ko’rinishini beradi. Uning haqiqiy qiymatini aniqlash uchun evalf funksiyasidan foydalaniladi.

    >restart;


    >with(student):

    >leftsum(x*sin(x),x=-3..5);


    3
    2 ( 3  2 i ) sin( 3  2 i )



    >evalf(%);


    i  0

    5.059324036


    >leftsum(x*sin(x),x=-3..5,12);


    2 11  2  




    2



    3 3  3 i sin 3  3 i



    >evalf(%);


    i  0
      

    2.384315849

    >rightsum(x*(2-ln(x^2))^3,x=-5..7);


    4 3

    >evalf(%);


    3 ( 5  3 i ) ( 2  ln( ( 5  3 i )2 ) )




    i  1

    -125.1073811

    >rightsum(x*(2-ln(x^2))^3,x=-5..7,7);


    12 7
    12  
    12 2 3

    5 


    i 2  ln 5 


    i  





    >evalf(%);


    7 i  1
    7
    7

    -55.30787680

    Download 439.9 Kb.

    Do'stlaringiz bilan baham:
  • 1   2   3   4   5   6   7   8   9




    Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
    ma'muriyatiga murojaat qiling