Matematikaning chegarasiz mamlakat degan iborasini bir necha bor eshitganman. Uning taqiqlanganligiga qaramay, matematikaga oid iboraning juda yaxshu sabablari bor. Inson hayotida matematika alohida o’rin tutadi


Kurs ishi mavzusining dolzarbligi


Download 277.64 Kb.
bet2/8
Sana11.05.2023
Hajmi277.64 Kb.
#1452532
1   2   3   4   5   6   7   8
Bog'liq
CHIZIQLI BIR JINSLI DIFFERENSIAL TENGLAMALAR SISTEMASI YECHIMINING TURG’UNLIGI

Kurs ishi mavzusining dolzarbligi. Matematikaning bir qator masalalari parameterga bogʻliq integrallar qiymatlari va aniq integral hisoblashga keltiriladi. Shu sababdan bu masalaning qo’yilishi dolzarb hisoblanadi.
Kurs ishi obyekti va predmeti. Chiziqli differensial tenglamalar sistemasi. Chiziqli differensial tenglamalar sistemalarga qo’yilgan chegaraviy masalalarni yechish.
Ishning maqsadi va vazifalari. Aniq integral va ularning xossalarini o’rganishdan iborat.
Kurs ishning tuzilishi. Kurs ishi kirish, 3 ta bob, 8 ta bo’lim, xulosa va foydalanilgan adabiyotlar ro`yxatidan iborat.

1.O’zgarmas koeffisiyentli chiziqli differensial tenglamalar sistemasi.
Bunday sistemaning sodda ko’rinishi

dan iborat, bunda o’zgarmas sonlar. esa ko’rilayotgan oraliqda aniqlangan va uzluksiz funksiyadir.
Ma’lumki, bir jinsli bo’lmagan chiziqli differensial tenglamalar sistemasining umumiy yechimini topish uchun, unga mos bo’lgan bir jinsli chiziqli differensial tenglamalar sistemasining umumiy yechimini topishga to’g’ri keladi.
Shuning uchun xam biz dastavval o’zgarmas koeffisiyentli bir jinsli chiziqli differensial tenglamalar sistemasining umumiy yechimini kvadraturasiz topish usulini qaraymiz.
Bir jinsli, o’zgarmas koeffisiyentli chiziqli differensial tenglamalar sistemasi berilgan bo’lsin.
(2)
Ma’lumki (2) sistemani, unga ekvivalent bo’lgan bitta -tartibli differensial tenglamaga keltirish mumkin.
Shuning uchun (2) sistemasining xususiy yechimlarini
(3)
ko’rinishda izlaymiz.
Bunda va lar o’zgarmas sonlardir.
Ularni shunday tanlab olamizki (3), (2) sistemani qanoatlantirsin.
Buning uchun (2) ga (3) olib borib qo’yamiz.
yoki buni ochib yozsak
(4).
Bu larga nisbatan bir jinsli algebraik tenglamalar sistemasidir.Bu sistema trivial bo’lmagan yechimga ega bulishligi uchun, uning asos determinanti nolga teng bo’lishi zarur.
(5).
(5) ga (2) sistemaga mos bo’lgan xarakteristik tenglama deyiladi. Uning ildizlariga xarakteristik son deyiladi.
(5) ga nisbatan n- darajali algebraik tenglamadir
(3), (2) sistemaning xususiy yechimi bo’lishligi uchun (5) xarakteristik tenglamaning ildizi bo’lishi kerak.
(4) ning koeffisiyentlaridan ushbu matrisani tuzamiz
(6).
a) Faraz etaylik xarakteristik tenglamaning ildizlari haqiqiy va bir-biriga teng bo’lmasin.
Agar ildizni (5) ga olib borib qo’ysak
(7) bo’ladi.
Isbot etamizkim qiymatda (5) determinantning xech bo’lmaganda tartibli minorlaridan biri nolga teng bo’lmaydi.
Haqiqatan xam xarakteristik tenglamaning oddiy ildizi bo’lgani uchun
(8)
nolga teng bo’lmaydi.
Ikkinchi tomondan
(9)
Bunda determinantdagi elementining algebraik tuldiruvchisi bo’ladi.Agar kiymatini (9) keltirib qo’ysak (8) ga asosan larning xech bo’lmaganda biri nolga teng bo’lmaydi, ya’ni (9) dagi n-1 tartibli determinantlardan xech bo’lmaganda biri nolga teng bo’lmaydi.
Bundan, (6) matrisaning rangi n-1 ga tengligi kelib chiqadi. Ya’ni (4) sistemadagi tenglamalardan biri qolganlarini natijasi ekanligi kelib chiqadi.
U xolda (4) sistema trivial bo’lmagan yechimlarga ega . Lekin matrisaning rangi n-1 ga teng bo’lgani uchun, bu ildizlar bir-biridan o’zgarmas songa fark kiladi.

Bunda lar o’zgarmas sonlardir.
Agar teng deb, bu qiymatlarni (3) ga qo’ysak, xarakteristik tenglamaning ildiziga mos bo’lgan (2) sistemaning xususiy yechimlari.
(10)
ga ega bo’lamiz.
Ma’lumki (2) sistemaning xususiy yechimlarini biror o’zgarmas songa ko’paytirsak, xosil bo’lgan ifoda yana berilgan sistemaning yechimi bo’ladi.
Shunga kura, xarakteristik tenglamaning ildizlari uchun yukoridagi muloxazalarni ishlatsak, sistemaning n- ta (10) ko’rinishdagi xususiy yechimlarini aniqlash mumkin.
Isbot etish mumkinkim, bu topilgan xususiy yechimlar, berilgan sistemaning fundamental yechimlar sistemasini tashkil etadi.
Misol 1

xarakteristik tenglama tuzamiz

b) Farazetaylikxarakteristiktenglama konpleksildizgaegabo’lsin. Xarakteristiktenglamaningkoeffisiyentlarihaqiqiysonalardaniboratbo’lganiuchunu gaqo’shmabo’lgan kompleksildizgaxamegabo’ladi..
Xarakteristik tenglamaning ildiziga mos bo’lgan (2) sistemaning yechimi

kompleks son bo’lgani uchun uni ko’rinishda yozish mumkin. U xolda

yechimlarga ega bulamiz. Bundan kurinadikim xarakteristik tenglamaning bir juft kompleks ildiziga (2) sistemaning 2 ta haqiqiy yechimi mos keladi.
Misol 2




v) Faraz etaylik xarakteristik tenglama karrali ildizlarga ega bulsin.
U xolda sistemaning umumiy yechimini oldingi metodlar bilan topa olmaymiz. Lekin bu xolda xam uning umumiy yechimini elementar funksiyalar yordamida topish mumkin.
O’zgarmas koeffisiyentli chiziqli differensial tenglamada qurgan edikim agar xarakteristik tenglamaning k- karrali ildizi bo’lsa, tenglamaning bu ildizlariga mos bo’lgan k ta chiziqli bog’liq bo’lmagan yechimlari mavjud bo’ladi.
Sistema uchun kuyidagi teoremani isbotsiz keltiramiz.
TEOREMA. Agar xarakteristik tenglamaning k karrali ildizi bulsa, bu ildizga mos bo’lgan (2) sistemaning yechimlari
(11)
ko’rinishda bo’ladi.
Bunda lar ga nisbatan darajasi dan katta bo’lmagan ko’p xadlilardir. Bu ko’p xadlilarning xar birida ta o’zgarmas sonlar qatnashadi. Bu ko’pxadlilarning xammasidagi xamma koeffisiyentlardan tasi ixtiyoriy bo’lib, qolgan koeffisiyentlar shu ta koeffisiyentlar orqali ifodalanadi.Xususiy xolda ko’pxadlilar o’zgarmas songa teng bo’lishi mumkin. Bu xolda xarakteristik ildizga mos bo’lgan (2) sistemaning yechimi
bo’ladi.
Bundagi sonlardan k tasi ixtiyoriy bo’lib, qolgan koeffisiyentlar ular orqali ifodalanadi.
Amaliyotda ko’pxadlilarning koeffisiyentlarini topish uchun, ularni berilgan (2) sistemaga kuyib, bu ko’pxadlalarning koeffisiyentlariga nisbatan tenglamalar sistemasiga ega bulamiz. Bu koeffisiyentlardan k tasini ixtiyoriy deb, qolgan koeffisiyentlarni ular orqali ifodasini topamiz.
Misol 3


bularni berilgan tenglama kuyib, aniqmas koeffisiyentlar metodidan foydalansak larga nisbatan tenglamalar sistemasiga ega bulamiz.

bulardan

yechimlar

xususiy yechimlarni topish
1)
2)
3)
Agar da
desak

O’zgarmas koeffisiyentli chiziqli differensial tenglamalar sistemasi
(1)
berilgan bo’lsin.
Ma’lumki (1) sistemani vektorli
(2)
ko’rinishda xam yozish mumkin. Bunda

Birustunlimatrisayoki o’lchovlivectorustun (2) vektorlitenglamauchunKoshimasalasi

(2)tenglamani yechimini
(3)
ko’rinishda izlaymiz. Bunda B, n tartibli matrisa

(3) ni (2) ga keltirib qo’ysak

yoki
(4)
tenglama ega bo’lamiz. Bunda E birlik matrisa

trivial bo’lmagan matrisa (4) tenglamani qanoatlantirishi uchun
(5)
matirisaning maxsus bo’lishi zarur va yetarlidir. Ya’ni uning determinanti
(6).
(6) ga (2) sistemaga mos bo’lgan xarkteristik tenglama deyiladi.
soniga A matrisaning xos qiymati, V vektor esa λ ga mos bo’lgan xos vektor deyiladi.
(6) xarkteristik tenglamaning xar bir λk ildizi uchun (4) tenglamadan nolga teng bo’lmagan

Matrisanianiqlaymiz.
(2) vektorlitenglamaningixtiyoriy tachiziqlibog’liqbo’lmagan

vektorli yechimlarga (2) tenglamaning fundamental yechimlar sistemasi deyiladi. Bunda quyidagi xollar bo’lishi mumkin.
1xol
Xrakteristik tenglamaning ildizlari haqiqiyva bir-biriga teng emas.
U xolda (2) tenglama n-ta yechimlarga ega bo’lib ularni
(7)
ko’rinishda yozish mumkin. Isbot etish mumkinkim bular (2) tenglamaning fundamental yechim sistemasini tashkil etadi.U xolda (2) tenglamaning umumiy yechimi
(8)
dan iborat bo’ladi.
Misol-1


2 xolxarakteristiktenglama kompleksildizgaegabo’lsinBuxolda (2) tenglamaningyechimibuildizgamosbo’lganyechimi

kompleks son bo’lgani uchun uni

ko’rinishda yozish mumkin ga asosan



Misol


3 xol.
Agarxarakteristiktenglamar-karraliλsildizgaegabo’lsa, uxolda, buildizgamosbo’lgan (2) tenglamaningyechimi

dan iborat buladi.
Misol-2

buni berilgan tenglamaga qo’yamiz

bundan

A1 , A2 ixtiyoriy


Endi (2) tenglamaning ta chiziqli bog’liq bo’lmagan yechimlaridan matrisani tuzamiz.

u xolda
(9)
ga matrisali tenglama deyiladi.
ga
Vronskiy determinanti deyiladi. Agar U(x) matrisa, (9) matrisiali tenglamani qanoatlantirsa, unga (9) tenglamaning integrali yoki fundamental matrisasi deyiladi. (matrisali yechim) Bundan ko’rinadikim chiziqli differensiali tenglamalar sistemasini
ni vektorli ravishda yoki
matrisali ravishda yozish mumkin. Bu tenglamalr orasidagi boglanish shundan iboratki matrisali yechimning ustunlari (2) tenglamaning uzaro chiziqli bog’liq bo’lmagan vektorli yechimlarni tashkil etadi.
Agar A(x) matrisa funksiya, o’zgarmas matrisa bo’lsa.

o’zgarmas koeffisiyentli matrisali

tenglamaning yechimini

ko’rinishda izlaymiz bunda tartibli matrisa

Agar o’zgarmas matrisa uchun

tenglik bajarilsa, u xolda son A matrisaning xos soni (xos qiymati), vektorga esa ga mos bo’lgan xos vektor deyiladi.
TEOREMA.Y(x) matrisa (9) tenglamaning fundamental matrisasi bo’lishi oraliqdagi qiymatlar uchun

shartining bajarilishi zarur va yetarlidir.
TEOREMA 2.Agar matrisa (9) tenglamaning biror intervalda aniqlangan matrisali yechimi bo’lsa u xolda xam bu tenglamaning yechimi buladi.
Ya’ni
S, tartibli ixtiyoriy o’zgarmas matrisa xakikatan xam
(10)
tenglamaning ikki tomonini ungdan C matrisaga kupaytiramiz.

\C o’zgarmas matrisa bo’lgani uchun

ya’ni Y1C (9) tenglamani yechimi buladi.



Download 277.64 Kb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling