Мавзу: Математик масалалар ва уларни ечиш методикаси
Matnli masalalarni yechish bosqichlari
Download 101.04 Kb.
|
Masala turlari va ularni yechish usullari
- Bu sahifa navigatsiya:
- Matnli masalalarning tuzilishi va turlari
- Sonli bog‘lanishlarga doir masalalar.
Matnli masalalarni yechish bosqichlari
Matnli masalalarni tenglamalar ѐrdamida yechish quyidagi bosqichlarda amalga oshiriladi. Masalani tahlil qilish. Bunda masalada berilgan maʼlum va nomaʼlum miqdorlar, ular orasidagi bog‘lanishlar aniqlanadi. Bu bog‘lanishlar asosida algebraik ifodalar tuzib olinadi (masala shartining matematik tildagi ifodasi). Hosil qilingan algebraik ifodalar masala shartiga binoan o‘zaro bog‘lanadi. Buni natijasida tenglama ѐki tenglamalar sistemasi hosil bo‘ladi. Tuzilgan tenglama ѐki tenglamalar sistemasi yechiladi. Topilgan ildizlarning tenglamani qanoatlantirishi tekshiriladi. Chet ildizlar bo‘lsa, ular chiqarib tashlanadi. Tenglamaning ildizlari tahlil qilinib, ular asosida masalaning javobi topiladi. Bu javoblar masalaning mazmuniga mos kelishi, javoblarning to‘liqligi tekshiriladi. Bu bosqichlar mantiqiy jihatdan o‘zaro bog‘langan. Masalan, tuzilgan algebraik ifodalarni o‘zaro bog‘lab tenglama tuzish bosqichi avvalgi bosqich bilan birgalikda kechadi. Chunki algebraik ifodalarni tuzishda aynan qanday ifodalar tuzilsa, ularni tenglik belgisi bilan bog‘lash mumkin bo‘lishi nazardan qochirilmaydi. Yaʼni, nomaʼlumlarni aniqlash, maʼlum va nomaʼlum miqdorlardan tenglama mazmuniga mos ifodalar tuzish bosqichi bilan tenglama tuzish bosqichi bir – biriga kirishib ketadi. Bu tabiiy hol. Chunki analiz va sintez ilmiy tadqiqotning parallel ravishda amalga oshiriladigan metodlaridir. Matnli masalalarning tuzilishi va turlari Masala shartining mazmuni hamda uni yechishda qo‘llaniladigan matematik tushunchalar bo‘yicha matnli masalalarni bir necha turlarga ajratish mumkin. V.N.Litvinenko va A.G.Mordkovichlarning “Praktikum po elementarnoy matematike: Algebra. Trigonometriya.” kitobida matnli masalar quyidagicha turlarga ajratilgan. Sonli bog‘lanishlarga doir masalalar. Bu kabi masalalarda biror sonning raqamlari orasidagi, ikki ѐki undan ortiq sonlar orasidagi bog‘lanishlarga ko‘ra baʼzi sonlarni topish talab etiladi. Quyida shunday masalalardan bir nechtasini misol sifatida keltiramiz. Birlar xonasidagi raqami o‘nlar xonasidagi raqamdan 2 ta ortiq bo‘lgan ikki xonali son bilan raqamlar yig‘indisining ko‘paytmasi 144 ga teng. Shu sonni toping. Ikkita ikki xonali sonning birinchisini o‘ng tomoniga ikkinchisi va 0 ѐzilsa, shunday besh xonali son hosil bo‘ladiki, uni ikkinchi sonning kvadratiga bo‘lganda bo‘linma 39 ga, qoldiq 575 ga teng bo‘ladi. Agar ikkinchi sonning o‘ng tomoniga birinchi sonni ѐzib, undan birinchi sonning o‘ng tomoniga ikkinchi sonni ѐzish natijasida hosil bo‘lgan son ayrilsa, ayirma 1287 ga teng bo‘ladi. Bu sonlar topilsin. Download 101.04 Kb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling