Maxsus nuqtalar va ularning tiplari


Misol. 1) funksiyada ajralgan maxsus nuqtaning tipini aniqlang. Yechish


Download 436.5 Kb.
bet2/3
Sana17.06.2023
Hajmi436.5 Kb.
#1543318
1   2   3
Bog'liq
Haydaraliyev.Ajralgan m nuqtalar

Misol. 1) funksiyada ajralgan maxsus nuqtaning tipini aniqlang.
Yechish. Berilgan funksiyaning ajralgan maxsus nuqtasi dan iborat bo`lib, bo`lganda esa
.
Demak, bu limit chekli sondan iborat bo`lgani uchun nuqta uchun qutulib bo`ladigan maxsus nuqta ekan. Shu sababli deb qabul qilsak, u holda funksiya nuqtada analitik bo`ladi.
2.2.Qutblar.
Agar nuqta funksiyaning qutbi bo`lsa, u holda ta`rifga ko`ra tenglikka ega bo`lamiz. Buning ma`nosi shundaki, qutbning biror atrofida funksiya nolga aylanmaydi, ya`ni har qanday son uchun ning shunday bir atrofini topish mumkinki, unda bo`ladi. Mana shunga asosan funksiya usha atrofga analitik bo`ladi, chunki uning maxraji nolga teng bo`la olmaydi.
Undan tashqari, bo`lgani sababli funksiya uchun qutulib bo`ladigan maxsus nuqta bo`lib , deb qabo`l qilishimiz mumkin. Natijada funksiya doirada analitik bo`lib nuqta uning nolidir. Shunday qilib, agar nuqta uchun qutib bo`lsa, uchun nol ekan.
Ta`rif. funksiya nolining tartibiga funksiya qutbining tartibi deyiladi.
Teorema. funksiyaning ajralgan maxsus nuqtasi qutb bo`lishi uchun funksiyaning nuqta atrofida Loran qatori bosh qismi hadlarining soni chekli bo`lishi zarur va yetarlidir: , bunda
Misol. Quyidagi funksiyalarning qutblari topilsin.
a) b)
Yechish.
a) funksiyaning oddiy noli, ya`ni funksiyaning oddiy qutbi.
b) funksiya nuqtada aniq emas, chunki
Buni aniqlash uchun ni qatorga yoyamiz:
Bunda limitga o`tsak , ya`ni qutulib bo`ladigan maxsus nuqta.
Endi boshqa maxsus nuqtalarni ham topish uchun kasr maxrajining nollarini aniqlaymiz: .
Bizga ma`lumki . Demak, nuqtalar berilgan funksiyaning oddiy qutblaridir.


Download 436.5 Kb.

Do'stlaringiz bilan baham:
1   2   3




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2025
ma'muriyatiga murojaat qiling