Problem Background


Birinchi tartibli Differensal tenglama


Download 256.45 Kb.
bet4/4
Sana11.02.2023
Hajmi256.45 Kb.
#1189703
1   2   3   4
Bog'liq
tezis buyicha urganish

Birinchi tartibli Differensal tenglama


Theorem 3.1 Boshlang’ich shartli (3.3) masala oraliqda yagona x(t) yechimga ega bo’lib, u quyidagi ko’rinishda aniqlanadi



(3.6)

Bu erda ushbu rekurent formula orqali aniqlanadi:



(3.7)

,

(3.8)

Isbot. Let then for . Therefore equation (3.1) has a form

,

(3.9)

where


.



(3.9) tenglamadagi o`zgaruvchilarni ajratish boshlang`ich qiymat muammosiga olib keladi.



,




,




.




Ikkala tomonni integrallash orqali

,



we have


,




,




, .



Shuning uchun (3.9) tenglamaning yechimi



for .

(3.10)

Chunki x(t) uzliksiz funksiya

,




where

,




,




,




.




Shuningdek,

,




,

(3.11)

or


.

(3.12)

Using continuity condition x(t) at t = 2, by similar way, we have

,




,




.

(3.13)

or

,




,




.

(3.14)

If we let for n = k – 1, then



,




,




,

(3.15)

or

.

(3.16)

Then from



,




we get




,




,

(3.17)

Va




,




,




,




,

(3.18)

.

(3.19)

Bu esa isbotni tuldiradi.





    1. Tenglama davriy yichimi haqida


Teorema 3.2. (3.1) tenglamaning yechimi funksiya n-davrli bo’lishi uchun tenglamaning yechimi ushbu

tenglik bajarilishi zarur va yetarli.


Isbot. Agar , u holda
3.1 teoremaga ko`ra

,




Bu yerda ck quyidagicha aniqlanadi.

.




Keyin x(k) sifatida ifodalanishi mumkin.

.

(3.20)

Let x(t) be n-periodic function, i.e.



for .




This gives

as t = 0.

(3.21)

According to the equation (3.20) we have

.




Soddalashtiring

.




Har ikkala tomonning natural logarifmlarini olamiz.

.




Shu yerdan olamiz.

.

(3.22)

Aksincha (3.20) tenglama bajarilsin, ya`ni

.




x(t) tenglamaning yechimi bo`lsin.






keyin

u holda .




(3.22) tenglamaga muvofiq oxirgi tenglama teng bo`ladi.

u holda .




Bu beradi

,




keyin

,




for ,



Ya`ni


.




Bu degani

for , r = t – n,




Shunga o`xshash tarzda biz isbotlashimiz mumkin.

for .




bunda
,
keyin
,
va
,
, for .
Bizda mavjud bo`lgan oralig`ida
va ,
Buning yechimi
,
, for .
Bizda mavjud bo`lgan oralig`ida
va ,
Buning yechimi
,
, uchun .
Bu dalilni tuldiradi.
Download 256.45 Kb.

Do'stlaringiz bilan baham:
1   2   3   4




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling