Problem Background
Birinchi tartibli Differensal tenglama
Download 256.45 Kb.
|
tezis buyicha urganish
- Bu sahifa navigatsiya:
- Tenglama davriy yichimi haqida
Birinchi tartibli Differensal tenglamaTheorem 3.1 Boshlang’ich shartli (3.3) masala oraliqda yagona x(t) yechimga ega bo’lib, u quyidagi ko’rinishda aniqlanadi
Bu erda ushbu rekurent formula orqali aniqlanadi:
Isbot. Let then for . Therefore equation (3.1) has a form
where
(3.9) tenglamadagi o`zgaruvchilarni ajratish boshlang`ich qiymat muammosiga olib keladi.
Ikkala tomonni integrallash orqali
we have
Shuning uchun (3.9) tenglamaning yechimi
Chunki x(t) uzliksiz funksiya
where
Shuningdek,
or
Using continuity condition x(t) at t = 2, by similar way, we have
or
If we let for n = k – 1, then
or
Then from
Teorema 3.2. (3.1) tenglamaning yechimi funksiya n-davrli bo’lishi uchun tenglamaning yechimi ushbu tenglik bajarilishi zarur va yetarli. Isbot. Agar , u holda 3.1 teoremaga ko`ra
Bu yerda ck quyidagicha aniqlanadi.
Keyin x(k) sifatida ifodalanishi mumkin.
Let x(t) be n-periodic function, i.e.
This gives
According to the equation (3.20) we have
Soddalashtiring
Har ikkala tomonning natural logarifmlarini olamiz.
Shu yerdan olamiz.
Aksincha (3.20) tenglama bajarilsin, ya`ni
x(t) tenglamaning yechimi bo`lsin.
keyin
(3.22) tenglamaga muvofiq oxirgi tenglama teng bo`ladi.
Bu beradi
keyin
Ya`ni
Bu degani
Shunga o`xshash tarzda biz isbotlashimiz mumkin.
bunda , keyin , va , , for . Bizda mavjud bo`lgan oralig`ida va , Buning yechimi , , for . Bizda mavjud bo`lgan oralig`ida va , Buning yechimi , , uchun . Bu dalilni tuldiradi. Download 256.45 Kb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling