Reja : Ulush va kasr tushunchasi bilan tanishtirish metodikasi. O‘nli kasrlarning yozilishi va o‘qilishi. Tayanch tushunchalar


Reja: Boshlang’ich sinf matematika kursida matnli masalalar


Download 200.4 Kb.
bet7/15
Sana04.04.2023
Hajmi200.4 Kb.
#1323586
1   2   3   4   5   6   7   8   9   10   ...   15
Bog'liq
13 tali mavzu

Reja:

  1. Boshlang’ich sinf matematika kursida matnli masalalar 

  2. Masalani yechishga o’rgatishning asosiy bosqichlari 

  3. Masalalarni yechish usullari 

  4. Masalaning yechilishi 


1. Boshlang’ich sinf matematika kursida matnli masalalar 
Turmushda sonlar bilan bog’liq bo’lgan cheksiz ko’p hayotiy vaziyatlar 
vujudga keladiki, bu sonlar ustida turli arifmetik amallar bajarish talab qilinadi.
Bular masalalardir. Masalan: 
1. Yosh tabiatshunoslarga 15 tup olma ko’chati va 10 tup olxo’ri ko’chati
ajratildi . Yosh tabiatshunoslarga qancha ko’chat ajratilgan? 
2. Yengil mashina yo’lda 4 soat bo’ldi va soatiga 56 km tezlik bilan yurdi.
Mashina qancha masofani bosib o’tdi? 
3. Do’konda 2 bo’lak chit sotildi. Birinchi bo’lak uchun 180 so’m, ikknchi
bo’lak uchun ikki marta ko’p pul berishdi, ikkinchi bo’lak uchun qancha pul 
berishgan?
Ta’lim maqsadlarida ko’pincha obstrakat vaziyatlardan foydalaniladi va 
muhim masalalar deb ataluvchi masala hosil qilinadi. Masalan: 8 ni hosil qilish
uchun 12 dan qaysi sonni ayirish kerak? Biz marta arifmetik masalalarni ko’rib 
chiqdik. Ularda qanday umumiylik bor?
Avvalo har bir masala berilgan va noma’lum sonlarni o’z ichiga oladi. 
Masaladagi son to’plamlar sonini yoki miqdorlarning qiymatini harakterlaydi,
munosasbatlarini ifodalaydi yoki berilgan mavhum sonlar bo’ladi. Masalan 1-
masalada 15 soni olma ko’chatlari to’plamini sonini haraterlaydi. 2-masalada 56
soni miqdor uzunlikning qiymatidir. 3-masalada 2soni ikki sonning munosabatini 
2 va 1-bo’lakdagi chitning bahosini ifodalaydi. 4-masalada 12, 8 mavhum sonlar
berilgan bo’lib , bular mos ravishda kamayuvchi va ayirmadir. Har bir masalada 
shart va savol bo’ladi. Masala shartida berilgan sonlar orasidagi va berilgan sonlar
bilan izlanayotgan sonlar orasidagi bog’lanish ko’rsatiladi, bu bog’lanishlar 
tegishli arifmetik amallarni tanlashni belgilab beradi. Savol esa qaysi son
izlanayotgan son ekanligini bildiradi. 

Masalan, 2-masalaning sharti: yengil mashina yo’lda 4 soat bo’ldi va soatiga 


56 km tezlik bilan bosib o’tdi? Masalani yechish bu masala shartida berilgan


sonlar va izlanayotgan son orasidagi bog’lanishni ochib berish va bu asosda 
arifmetik amallarni tanlash, keyin esa ularni bajarish hamda masala savoliga javob
berish demakdir. 
Yuqorida keltirilgan masalaning yechilishini ko’ramiz. 1-masala sharli olma
va olxo’ri ko’chatlari to’plamlar birlashmasi amalini aniqlaydi. Masala savoli 
mazkur to’plamlar birlashmasi amali masala yechilishi uchun zarur bo’lgan
berilgan sonlarni qo’shish amaliga mos keladi. 15+10=25 masala savoliga javob: 
yosh tabiatshunoslarga 25 tup ko’chat ajratilgan.
2-masala shartidan mashinaning tezligi va uning harakaty vaqti ma’lum. 
Mashina bosib o’tgan yo’lni topish talab etiladi. Bu kattaliklar orasidagi mavjud
bog’lanishdan foydalanib masalani yechamiz: 56*4=224 masala savoliga javob: 
mashina 224 km yo’l bosgan.
3-masalani yechamiz uchun 2 marta ko’p ifodani ma’nosini bilishdan 
foydalaniladi. 18*2=36 masala savoliga javob: 2-bo’lak 36 so’m turadi.
Ko’rib turibmizki, hayotiy vaziyatdan arifmetik amallarga o’tish turli 
masalalarda berilgan sonlar va izlanayotgan son orasidagi turli bog’lanishlar bilan
belgilanar ekan. 
Masalalarning turlari haqidagi masalaga to’xtalamiz: hamma arifmetik
masalalar ularni yechish uchun bajariladigan amallar soniga qarab soda va 
nurakkab masalalarga bo’linadi. Yechilishi uchun bitta arifmetik amal bajarilishi
zarur bo’lgan masala sodda masala deyiladi. Yechilishi uchun bir-biri bilan bog’liq 
bo’gan bir nechta ular bir xil amal bo’lishidan qat’iy nazar amaliy bajarish zarur
bo’lgan masala murakkab masaladir. 
Sodda masalalarni qanday amal yordamida yechilishiga qarab (qo’shish,
ayirish, ko’paytirish, bo’lish bilan yechiladigan sodda masalalar) yoki ularning 
yechilashi davomida shakillantiriladigan tushunchalarga bog’liq ravishda turlarga
ajratish mumkin.

Murakkab masalalar uchun ularni ishga foydasi tegadigan qilib bunday 


ma’lum gruppalarga klassifikatsiyalashning yagona asosi yo’q. Matematika
boshlang’ich kursida sodda masalalar va asosan 2-4 amalli murakkab masalalar 
qaraladi. Masala bilan savollar deb ataluvchi mashqlar arifmetik masala bilan
yaqin bog’lanishda bo’ladi. Masala savollarda har masalalardek masala sharti
(unda sonlar ham bo’lishi mumkin, bo’lmasligi ham mumkin) va savol bo’ladi.
Masalan: ikki posyolkadan bir vaqtning o’zida, bir-biriga qarab velosipedchi va 
motosiklchi yo’lga chiqib, ular 36 minutdan so’ng uchrashdilar. Ularning har biri
uchrashguncha yo’lda qancha vaqt bo’lgan?
Masalalar yechish jarayonining o’zi ma’lum metodika o’quvchilarning aqliy
rivojlanishiga ancha ijobiy ta’sir ko’rsatadi, chunki u aqliy operatsiyalarni analiz 
va sintez, konkretlashtirish va abstraklashtirish, taqqoslashi, umumlashtirilishi
talab etiladi. Masalan, o’quvchi istalgan masalani yechayotganida analiz qiladi
savolni masala shartida ajratadi, yechish planini tuzayotganida sintez qiladi, bunda
konkretlashtirishdan (masala shartini hayolan chizadi) so’ngra abstraklashdan 
foydalanadi (konkret situatsiyadan kelib chiqib arifmetik amalni tanlaydi) biror bir
turdagi masalalarni ko’p marta yechish natijasida o’quvchi bu turdagi masalalarda 
berilgan va izlanayotgan sonlar orasidagi bog’lanishlar haqidagi bilimni
umumlashtiradi, buning natijasida bu turdagi masalalarni yechish usuli 
umumlashtiriladi.
Bolalarni masala yechishga o’rgatish – bu berilgan va izlanayotgan sonlar 
orasidagi bog’lanishni aniqlashni va buning asosida arifmetik amallarni bajarishni
o’rganish demakdir. 
Masalalarni yechish uquvida o’quvchilar egallashi lozim bo’lgan markaziy
zveno berilgan sonlar va izlanayotgan son orasidagi bog’lanishni o’zlashtirishdir. 
Bolalarning masalalr yecha olish uquvlari va bu bog’lanishlarni qanchalik yaxshi
o’zlashtirganliklariga bog’liqdir. Shuni hisobga olgan holda boshlang’ich sinflarda 
yechilishi berilgan sonlari va noma’lumlar orasidagi bir xil bog’lanishlarga
asoslangan konkret va mazmuni va soni berilganlari bilan esa farq qiluvchi 
masalalar gruppasi bilan ish ko’riladi. Bunday masalalar gruppasini bir turdagi
masalalar deb ataymiz.
Masalar ustida ishlash o’quvchilarni avval bir turdagi masalalarni yechishga, 
so’ngra boshqa turdagi masalalarni uechishga, so’ngra boshqa turdagi masalalarni
yechishga majburlashga olib kelinishi kerak emas. Uning asosiy maqsadi 
o’quvchilarni turli hayotiy vaziyatlardagi berilgan sonlar va izlanayotgan son
orasidagi ma’lum bog’lanishlarni ularni murakkablashib borishini ko’zda titgan 
holda aniqlay olishga o’rgatishdir. Bunga erishish uchun o’qituvchi bu turdagi
masalalarni yechishni o’rgatish metodikasida ma’lum maqsadlarni ko’zlaydigan 
bosqichlarni ko’zda tutish lozim.
Birinchi bosqichda o’qituvchi ko’rilayotgan turdagi masalalarni yechishga 
tayyorgarlik ishini olib boradi. Bu bosqichda o’quvchilar mazkur masalalarni
yechishda tegishli amallarni tanlash uchun asos bo’ladigan bog’lanishlarni 
o’zlashtirishlari lozim.
Ikkinchi bosqichda o’qituvchi ko’rilayotgan turdagi masalalarni yechilishi 
bilan o’quvchilarni tanishtiradi. Bunda o’quvchilar berilgan sonlar va noma’lum
son orasidagi bog’lanishni aniqlash, buning asosida arifmetik amallarni tanlashni 
o’rganadilar, ya’ni masalada ifodalangan konkret, vaziyatdan tegishli arifmetik
amalni tanlashga o’tishni o’rganadilar. Bunday ishlarni olib boorish natijasida 
o’quvchilar ko’rilayotgan turdagi masalalarni yechish usuli bilan tanishadilar.
Uchinchi bosqichda o’qituvchi ko’rilayotgan turdagi masalalarni yechish 
uquvini shakllantiradi. O’quvchilar bu bosqichda ko’rilayotgan turdagi istalgan
masalani uning konkret mazmunidan qat’iy nazar yechishni o’rganishlari kerak, 
ya’ni bu turdagi masalalarni yechish usullarini umumlashtirishlari lozim.
Yuqorida qayd qilingan bosqichlar ustida ishlash metodikasini mufassalroq 
qarab chiqamiz.
U yoki bu turdagi masalalarni yechishga tayyorgarlik ko’rishi arifmetik 
amallarni tanlashda berilgan sonlar va izlanayotgan son orasidagi qanday
bog’lanishning tayanishga bog’liq. Shunga muvofiq ravishda maxsus mashqlar 
o’tkaziladi.
1. Ko’p hollarda – masalalar yechishga qadar to’plamlari ustida amallar 
bajaradi. Masalan, ko’p sodda masalalarni yechilishi bilan tanishtirish oldidan
to’plamlar ustida amallarga doir mashqlar berish lozim. Bunda to’plamlarning 
elementlari konkret predmetlar bo’lishi kerak (cho’plar, qog’ozlar, qiyilgan
geometrik figuralar, rasmlar va hokazolar). Masalan, yig’indini topishga doir 
mashqlar taklif qilinadi.
Quyonchalar solingan savatlarni oling. (bolalar buni bajaradilar). O’tloqda 4 
ta quyon sakrab yurardi. Ularning yoniga yana 3 ta quyoncha kelib qo’shildi. (yana
3 ta suratni olib qo’yadilar). Hammsi bo’lib nechta quyoncha bo’ldi? (bolalar 
suratlarni sanaydilar). Biz 4 ga 3 ni qo’shdik: (suratlarni korsatadilar ) va 7 ni hosil
qildik.
Masalalar mazmuniga ko`ra turlari. Tenglamalar tuzib yechiladigan masalalar
Reja:


  1. Tenglamalar tuzib masalalar yechishni o’rgatish metodikasi


  2. O'quvchilarga mavzu yuzasidan masalalar yechib ko'rsatish



Matematika darsligi o'quvchilarni ba'zi xil masalalarni tenglamalar tuzib yechishga o'rgatishni nazarda tutadi. Masalalarni tenglamalar tuzish bilan qo'shish, ayirish, ko'paytirish va bo'lish amallarining noma'lum sonlarini topishga doir sodda masalalar yechishga o'rgatish va misollar bilan birgalikda matnli masalalarni tenglamalar yordamida yechib o’quvchilarning bilimlarini mustahkamlash muhim vazifa hisoblanadi. Mantiqiy fikrlash qobiliyatlarini shakllantirish va rivojlaritirishga, o'z fikrlarini mustaqil bayon qila olishga zamin yaratib, o'quvchilarni fikrlash dunyoqarashini kengaytirib, ularni zehnini va hozirjavoblik fazilatini tarbiyalash bosh maqsaddir.
Matematika darsligi o'quvchilarni ba'zi xil masalalarni tenglamalar tuzish bilan yechishga o'rgatishni nazarda tutadi. O'quvchilar masalalarni tenglamalar tuzish bilan yechishni o'rganib olishlari uchun ular masaladagi berilgan va izlanayotgan miqdorlarni ajratib olishi kerak bo'ladi. Tenglamalarni tuzish yordamida sodda masalalarni yechish ikkinchi sinfdan boshlanadi. Ikkinchi sinfda tenglamalar tuzish usuli bilan qo'shish, ayirish, ko'paytirish va bo'lish amallarining noma'lum komponentlarini topishga doir sodda masalalar yechiladi.
O'quvchilarga mavzu yuzasidan masalalar yechib ko'rsatamiz.
Masalan, "Savatda bir necha anor bor edi. Bog'dan yana 17ta anor uzib kelib savatga solingandan keyin savatdagi anorlar 32 ta bo'ldi, Avval savatda nechta anor bo'lgan?".
Oldin bu masalani qisqacha shartini.tuzib olarniz:
1) oldin savatdagi anorlar sonini x bilan belgilab olamiz;
2) savatdagi anorlar va yana terib kelib qo'shilgan anorlar sonini (X+17) deb olamiz;
3) barchasi 32 ta bo'ladi va tenglama quyidagicha tuziladi: x + 17 = 32.
Bor edi - ? anor
Uzib kelindi - 17 ta anor
Barchasi - 32 ta bo'ldi
Masalani tenglama usul bilan yechishda o'quvchining taxminiy mulohazalari: "savatdagi anorlar sonini x bilan belgilasak, uzib kelingan anorlar 17 ta, barchasi 32 ta bo'ldi va savatda qancha anor bo'lgan?" demak, masalaning shartiga ko'ra tensrlama tuzib ishlaymiz.
Yechish: x+17=32
x=32-17
x = 15 demak, savatda 15 ta anor bo'lgan.
O'quvchilar uchun eng qiyin vaziyat noma'lumni to'g'ri o'rinda ishlatib, tenglamani to'g'ri tuzishdir. O'quvchilarda tushunchalar hosil bo'lishi uchun shunga o'xshash masalalardan yana bir nechtasini tushuntirgan holda ishlab ko'rsatamiz,
1. Masala. Voleybol to'garagida 17 ta o'gil bola va bir necha qiz bolalar bor edi. To'garakka yana 8 ta qiz qo'shib olingapidan keyin qiz bolalar soni o'g'il bolalar sonidan 4 ta kam bo'ldi. Shaxmat to'garagida qancha qiz bola bo'lgan?
1) o'g'il bolalar 17 ta;
2) bir nechta qiz bolalarni x bilan belgilaymiz;
3) to'garakka yana 8 ta qiz qo'shiladi;
4) qiz bolalar soni o'g'il bolalar sonidan 4 ta kam.
Tenglamani quyidagicha qilib tuzib olamiz:
demak, o'g'il bolalar - 17ta; qiz bolalarni - x + 8 – x
Yechish: x + 8 - 4 = 17
x + 4 = 17
x = 17 – 4
x = 13 qiz bolalar soni 13 ta ekan.
Shunday qilib boshlang'ich sinfning boshidan oxirigacha sonli tenglik va tengsizliklar, o'zgaruvchili tengsizlik, tenglamalarni o'qitish, tenglamalar tuzib masalalar yechish jarayoni tizimli oddiydan murakkabga davom ettiriladi.
2. Agar o'ylangan sonni 2 marta va 17 ta orttirilsa, 47 hosil bo'ladi. Shi: sonni toping?
Tenglamani quyidagicha tuzamiz: x · 2 + 17 = 47
Yechish:
x · 2 + 17 = 47
x · 2 = 47 – 17
x · 2 = 30
x = 30:2
x = 15 demak, o'ylangan son 15 ekan. Javobiga ishonch hosil qilishimiz uchun tekshirib ko'ramiz, x = 15 15 · 2 + 17,= 47 javob to'g'ri ekan.
3. Bola 5 ta ruchka va 35 so'm turadigan jurnalga 60 so'm to'ladi. 1 ta ruchka necha so'm turadi?
Yechish: 5 · x + 35 = 60
5 · x = 60-35
5 · x = 25
x = 25:5
x = 5
Tekshirish: 5 · 5 + 35 = 60 demak, javob x = 5 (1 ta ruchka 5 so'm turar ekan)
Tenglik to'g'ri bo'lishi uchun "darchaga" qanday sonni qo'yish kerakligini o'quvchilardan so'raymiz va ular og'zaki tojfadilar, tekshirishni ham og'zaki bajaradilar (6+7=13; 12 - 9=3; 16-9 =7). Keyin tenglama atamasini no'malum son ekanligini tushuntirib o'tamiz. Kerakli sonni tanlab, o'rniga qo'yganlaridan so'ng bunday tengliklar tenglamalar deb atalishini aytamiz. Ya'ni "tenglamani yechish degan so'z, x ning o'rniga qo'yganda tenglik to'g'ri bo'ladigan sonni topish" demakdir.
Boshlang'ich sinflarda, xususan, II sinfda o'quvchilarga bir no'malumli tenglamalarning ba'zi xillari yechilishlari bilan tanishtiramiz.
Tenglamalarni yechishda quyidagi qoidalarni bilish o'quvchilarga qiyinchilik tug'dirmaydi:
1. Noma'lum qo'shiluvchini topish uchun yig'indidan ma'lum qo'shiluvchini ayiiish kcrak.
2. Noma'lum kamayuvchini topish uchun ayirmaga. ayiriluvchini qo'shish kerak.
3. Noma'lum ayiriluvchini topish uchun karpayuvchidan ayirmani ayirish kerak,
4. Noma'lum bo'linuvchini topish uchun bo'linmani bo'luvchiga ko'paytirish kerak.
5. Noma'lum ko'payuvchini topish uchun ko'paytmani ko'paytuvchiga bo'lamiz.
O'qituvchining tenglama bilan tanishtiruvi ushbu ko'rinishdagi masalalarni yechish bilan amalsa oshiriladi: "Noma'lum songa 4 ni qo'shishdi va 12 hosil qilishdi,
Noma’lum sonni toping?" .
Masala bo'yicha x+4=12 tenglama tuziladi. Keyin o'quvchilarga “tenglamada nima ma'lum?'' (Ikkinchi qo'shiluvchi 4 va yig'indi 12) “Nima noma’lum?" (Birinchi qo’shiluvchi) "'Noma'lvm qo'shiluvchini qanday topish kerak?" (Yig’indi 12 dan ma’lum qo’shiluvchi 4 ni ayirish kerak) saavollari bilan murojaat qiladi.
Yechilishi: x+4=12
x=12-4
x=8
Tenglama yechib bo'lingandan keyin tekshirish qilinadi: dcmak.x= 8
8+4=12 12=12 bo’ladi.
Noma'lum sonni topish uchun, ko'paytmani ko'paytiruvchiga bo'lamiz.
Misol: (x- 60): 4=80
x-60 = 80 · 4
x-60=320
x = 320+60
x=380 hosil bo’ladi.
(380-60):4=80
Demak, bo'linuvchi x va 60 sonlarining; ayirmasi bilan ifodalangan, bo'luvchi 4, bo'linma 80. Noma'lum bo'linuvchini topish uchun bo'linmani bo'luvchiga ko'paytirish kerak va tenglamaning davomini yechish o'quvchilarga qiyinchilik tug'dirmaydi.
Misol: x · 2+21=25
x · 2=25-21
x · 2=4
x=4:2
x=2 hosil bo'ladi,
2 · 2+21=25
O'quvchilarning olgan bilimlarini tekshirish maqsadida "Jim" o'yinini o'tkazamiz.
Kombinatorik masalalarni boshlang`ich sinflarda noanalitik usullarda yechishni o`rgatish

Download 200.4 Kb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8   9   10   ...   15




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling