S. o r I f j o n o V elektromagnitizm
Download 48 Kb. Pdf ko'rish
|
- Bu sahifa navigatsiya:
- 19-§. Bio-Savar-Laplas qonuni
- (19.7) va (19.4) ga asosan maydon kuchlanganligi hisobla- nishi mumkin
- Y e c h im . (19.9) formulani qoMlaylik. Koordinata boshini maydon izlanayotgan nuqtaga joylashtirsak: r = 0, dH
- 20-§. Tokli konturning uzoq masofalardagi magnit maydoni
- | r - r f 4л- f. | f - r f » M agnit m aydon uchun chegaraviy shartlar: B\n = Bln’ Ulr = Hjr
- MAGNIT MAYDONNING ZARYADLARGA TA’SIRI 21-§. Lorens kuchi. Zaryadli zarraning magnit maydondagi harakati
boMadi. N a tija d a ikki m u h it c h e g ara si u c h u n H u = H 2T+ i„. (18.8) B u n d a n ikki m u h it c h e g a ra s id a m a g n it m a y d o n in d u k s iy a s in in g q a n d a y o 'z g a r is h in i a n iq ia y m iz : Bu _ B2x + 1„. (18.9) Vi Vo V 2 V 0 4 7 T a r ix a n B io — S a v a r — L a p la s q o n u n i e m p ir ik ra v is h d a to p ilg a n va t o ‘liq to k q o n u n in i aso slash u c h u n x iz m a t q ilgan . T o 'l i q to k q o n u n id a n M a k sv e ll te n g la m a s i rotH = j k e ltirib c h iq a r ilg a n . L e k in f a n n in g z a m o n a v iy b a y o n i u n i ta rix iy riv o jla n is h i b ila n m o s k e lish i s h a r t e m a s. 18.1. U zun silindrdagi tokning ichki va tashqi magnit maydoni qanday yo‘nalgan? 18.2. Toroidning ichki va tashqi m aydoni qanday yo‘nalgan? 18.3. Toroidning ichki maydoni uning uzunligiga bog‘Iiqmi? 18.4. (18.6) tenglikni batafsil keltirib chiqaring. 18.5 (18.8) tenglikni batafsil keltirib chiqaring. 18.6. Ikki parallel sim lar oralig'i / ga teng. U lardan bir yo‘nalishda I tok o qm oqda. Quyidagi nuqtalardagi m agnit m aydon kuchlaganligi hisoblansin: a) ikki sim o'rtasid a; b) sim lardan 1/4 va 3//4 m asofadagi nuqtada; c) sim lardan / masofalardagi nuqtada; d) sim lardan 1/4 va 5 1/4 masofalardagi nuqtada. 18.7. Tom onlari a bo'lgan kvadratning uchlari orqali kvadrat tekis- ligiga tik ravishda to ‘rttajuda uzun sim bo'ylab bir tom onga /to k oqmoqda. K vadrat m ark azidagi va kvadrat to m o n la rin in g o'rtasid ag i m agnit kuchlanganlikni hisoblang. 18.8. Avwalgi masalada toklarning biri teskari yo‘nalishda oqsa, javob- lar qanday b o 'lad i? 18.9. T om onlari a boMgan m untazam uchburchakuchlaridan uchbur- chak tekisligiga tik ravishda u ch ta ju d a uzu n sim bo'ylab ikkitasi bir yo‘nalishda, uchinchisi teskari yo'nalishda I tok o'tm oqda. U chburchak m arkazida va tom onlarining o'rtasidagi m agnit m aydon kuchlanganligini hisoblang. 18.10. / r va / toklar koordinata o 'qlari bo'ylab o'qadi. Fazodagi r nuqtadagi m agnit m aydon kuchlanganligini toping. 18.11. Cheksiz uzunlikdagi sim A, chiziqli zichlik bilan zaryadlangan bo'lib, 9 tezlik bilan o 'zining y o 'nalishida harakatlanm oqda. S im dan R masofadagi nuqtada m agnit m aydon kuchlanganligini hisoblang. 18.12. Fazodagi ikki cheksiz u zun sim lar o 'z aro tik b o 'lib , ular orasidagi eng kichik m asofa < iboisin. Sim lardagi toklar va / 2 bo'lsa, d masofaning o'rtasidagi magnit kuchlanganlikni hisoblang. M a g n it m a y d o n in in g a s o siy te n g la m a la r i q u y id a g ila r edi: 19-§. Bio-Savar-Laplas qonuni divB = 0, rotH = j , (1 9 .1 ) (1 9 .2 ) M a g n it m a y d o n n i to k la r h osil q ila r e k a n , to k la rg a k o 'r a m a g n it m a y d o n n i h is o b la s h n i o ‘rg a n is h k erak . A y rim h o lla rd a m a y d o n n i t o ‘liq to k q o n u n i y o rd a m id a to p is h m u m k in . U m u m i y h o ld a m a y d o n n i h is o b la s h y o 'lla r in i to p is h u c h u n , q u y id a g ic h a y o ‘l tu tila d i. M a te m a tik m e to d la rd a n fo y d a la n ib , m a g n it m a y d o n n i s h a k lid a iz la y m iz . Bu y e rd a k iritilg a n y a n g i A n o m a ’lu m fu n k siy a m a y d o n n in g v e k to r p o te n s ia li d e b a ta la d i. M a g n it m a y d o n n in g b u n d a y a lm a s h tirilis h i (1 9 .1 ) te n g la m a n in g a v to m a tik b a ja rilis h ig a o lib k e la d i, c h u n k i ik k in c h i d a ra ja li div rotA = 0 h o s ila d o im o n o l ga te n g . (1 9 .4 ) b e lg ila s h n i (1 9 .2 ) te n g la m a g a q o 'y a y lik . V e k to r la r a n a liz i te n g la m a la r id a n fo y d a la n ib (ilo v a g a q a r a n g ), q u y id a g ila m i to p a m iz : V e k to r m a y d o n n i b a ta f s il b ilis h u c h u n u n i n g d iv va ro t h o s ila la rin i b ilis h k erak . S h u n in g u c h u n (1 9 .4 ) te n g la m a m a y d o n p o te n s ia lin i t o 'l i q a n iq la m a y d i, u n g a q o 's h i m c h a s h a r t k iritis h lo z im . Q o ‘s h i m c h a s h a r tn in g divA = 0 s h a k ld a t a n la n is h i L o re n s k alib ro v k a si d e b a ta la d i. U h o ld a : (1 9 .6 ) te n g la m a P u a s s o n te n g la m a s i d e b a ta la d i. U n g a k o ‘ra A v e k to rn in g h a r b i r ta sh k il e tu v c h isi to k z ic h lig in in g te g is h li ta sh k il e tu v c h isi b ila n a n iq la n a d i. T a la b a la r s k a ly a r p o te n s ia l u c h u n P u a s s o n te n g la m a s in in g y e c h im in i e le k tro s ta tik a d a n b ilg a n i u c h u n , v e k to r p o te n s ia l u c h u n y e c h im n i h a m o ‘x s h a tis h u su li b ila n y o z is h m u m k in : B u y e r d a r — m a y d o n h is o b la n a y o tg a n n u q ta n in g ra d iu s v e k to ri, r ' — to k o ‘ta y o tg a n n u q ta la m in g rad iu s v ektori. r ' b o ‘y ic h a integral h is o b la n g a n i u c h u n , n a tija fa q a t r g a bogMiq. В = rotA (1 9 .4 ) rot rotA = grad div A - ДA = /J/unj . (19.5) (19.6) (19.7) (19.7) va (19.4) ga asosan maydon kuchlanganligi hisobla- nishi mumkin: f f ( r ) = — V x A = — f v x MMo 4 я у . г J y\r ~ r dV' = 1 r j ( r ' ) x ( r - r ' ) j V , (19.8) v bu ifoda hajmiy toklar magnit maydonini hisoblash uchun qulay. Chiziqli toklar uchun quyidagi almashtirishlarni bajaramiz: ] ( r ' ) d V ' = j ( r ' ) S ' d l ' = I d l', = (19.9) 4 n r |r _ r -| Bunda tokning kichik elementining magnit maydonini integralsiz yozish mumkin. ?' — o‘zgarmas bo'lgani uchun koordinata boshini shu tok elementi turgan nuqtaga joylashtirsak (r' = 0), magnit maydon elementi quyidagicha ifodalanadi: dm=h ^ - (19Л0) Harakatdagi nuqtaviy zaryad uchun (21.8) ni quyidagicha almashtiramiz: ] { T ') d V ' = q9 = (19.11) 4 ^ \ r - ? f Bu yerda r ' — harakatdagi zaryadli zarra koordinatasi. U vaqtga bog‘liq bo‘lgani uchun maydon ham vaqtga bog‘liq bo‘ladi: zarra yaqinlashayotganda oshib boradi, uzoqlashayotganda kamayib boradi. Koordinata boshini maydon izlanayotgan nuqtada joylashtirsak, r = 0 bo‘lib, н 19.1-rasm. 19.2-rasm. (19.8)—(19.11) ifodalar Bio—Savar—Laplas qonunining turli shakllari deb hisoblanadi. Ular yordamida tokli kesma, tokli aylanma konturning o‘qidagi magnit maydonlar analitik hisoblanishi mumkin. (19.8)—(19.9) formulalar ixtiyoriy toklarning magnit maydonini sonli metodlar bilan hisoblash uchun asos boMadi. Masala. Tokli kesma bo‘ylab /doimiy tok o‘qmoqda. Kesmadan R masofada turgan (19.1-rasm) nuqtadagi magnit maydon kuchlanganligini toping. Y e c h im . (19.9) formulani qoMlaylik. Koordinata boshini maydon izlanayotgan nuqtaga joylashtirsak: r = 0, dH vektorning yo‘nalishi dl va ?' larga tik (rasm tekisligiga tik), formuladagi minus ishorani hisobga olganda bizga qaragan boMadi. Turli d l elementlaming maydoni bir xil yo‘nalgan ekan, ularning modulini hisoblasak yetarli. Vektor ko'paytma ta’rifiga ko‘ra: \ d l * r '\ = dl r ' s m d = dl r 'cosa . Rasmga ko‘ra: dl = r ' d a / c o s a , r' = R / cos a. Unda: dH = - ^ - ^ d a c o s a . 19.2-rasmga muvofiq a burchak chegaralarini qo‘yib integrallaymiz: (19.13) 4 k R j AnR -al d H * Ч < Г ■ M a y d o n n in g y o ‘n a lis h i o ‘ng p a r m a q o id asig a b o ‘ysinadi. Masala. R ra d iu sli h a lq a b o ‘y la b I to k o q m o q d a . H a lq a o ‘q id a , h alq a te k is lig id a n h m a s o fa d a g i m a g n it m a y d o n k u c h la n g a n lig in i h iso b la n g (1 9 .3 -ra s m ). 19.3-rasm. K o o r d in a ta b o s h in i m a y d o n h is o b - la n a y o tg a n n u q ta g a jo y la s h tirib , (1 9 .1 3 ) f o r m u la d a n fo y d a la n a m iz . d H m a y d o n to k n in g o ‘qig a n is b a ta n b u rc h a k o s tid a j o y l a s h g a n , le k in tu rli d l e l e m e n t - l a r n i n g m a g n i t m a y d o n i n i h i s o b l a b q o ‘s h ilg a n d a , fa q a t h a lq a o ‘qi b o ‘y lab ta sh k il e tu v c h i m a y d o n q o la d i. S h u n in g u c h u n m a y d o n n in g d H z = d H sin a ta sh k il e tu v - c h isin i h iso b la y m iz . d l va ?' v e k to rla r o ‘z a ro tik b o 'lg a n i u c h u n : N a tija v iy m a y d o n h a lq a o ‘qi b o ‘y lab o ‘ng p a r m a q o id a s ig a b in o a n y o ‘n a lg a n . J u m la d a n h a lq a m a r k a z id a m a y d o n k u c h l a n g an lig i H = I / 2 R . Savol va masalalar 19.1. £> tezlikdagi q nuqtaviy zaryad to ‘g ‘ri chiziqli harakatlanm oqda va k u zatu v n u q ta sid a n R m asofaga y e tg a n d a m agn it m ay d o n k u c h lan g an lig i en g k a tta q iy m atd an /V m a rta k ich ik ro q b o 'lg a n . Z ary ad kuzatuv nuqtasid an qanday m asofada o ‘tgan? 19.2. О kuzatuv nuqtasi / tokli kesm adan R masofada joylashgan. Kesmaning uchlarini О nuqta bilan birlashtiruvclii chiziqlar kesma bilan a va P burchak hosil qiladi. О nuqtadagi magnit maydon kuchlanganligini toping. 0 ‘z g a ru v c h i m iq d o r fa q a t / b o ‘lg a n i u c h u n : j/d l = 2n R I (19.15) Javob: H = - - - (cos a + cos В ). 4 n R K 19.3. Ichki va tashqi radiuslari Л, va Қ boMgan ju d a y u p q a halqa b o ‘ylab / aylanm a tok o ‘qm oqda. H alq a o 'q id a , halqa m arkazidan h m asofadagi m agnit m aydon kuchlanganligini hisoblang. 9.4. Awalgi masalada R = 0 boMganida javob qanday boMadi? R{ va R1 orasidagi farq ju d a kichik boMganida javob q an d a y boMadi? 19.5. T om o n lari a boMgan ingichka o ‘tkazgichd an yasalgan m u n ta- zam u c h b u rc h a k to m o n la rid a n / tok o 'q m o q d a . U c h b u rc h a k m ark a - zid ag i m a g n it m a y d o n kuchlanganligini toping. 19.6. T om onlari a boMgan ingichka o ‘tk azgichdan yasalgan kvadrat to m o n la rid an I to k o 'tm o q d a. K vadrat m arkazidagi m agnit m aydon kuchlanganligini toping. 19.7. I elektr toki x koordinata o ‘qini m anfiy tarafidan koo rd in ata boshigacha, so ‘ng у o ‘qi b o 'y lab cheksizgach a o 'tm o q d a . F azodagi nuqtadagi m agnit m aydon kuchlanganligini hisoblang. 19.8. Tokli halqa diarhetri bo‘yicha a burchakka bukilgan. Bunda halqa markazidagi m agnit maydon kuchlanganligi n echa m arta kamaygan? 20-§. Tokli konturning uzoq masofalardagi magnit maydoni M aM u m k i, y a d ro a tro f id a a y la n m a h a r a k a t q ila y o tg a n e le k tro n la r a y la n m a to k va m a g n it m o m e n t hosil q ilad i. H a r b ir e lek tro n v a b o s h q a k o ‘p c h ilik e le m e n ta r z a rra la r h u s u s iy m a g n it m o m e n tg a ega. U la r d a n tu z ilg a n a to m va m o le k u la la rn in g k o 'p c h ilig i m a g n it m o m e n tg a eg a. S h u n d a y h o ld a to k li k o n tu r — m a g n it d ip o ln in g m a y d o n in i b ilish m u h im d ir. Y u q o r id a to k li h a lq a o ‘q id ag i m a g n it m a y d o n k u c h la n g a n lig i h is o b la n g a n e d i. B u boM im da to k li y assi h a lq a d a n u z o q m a s o fa lard a g i ix tiy o riy n u q ta d a g i m a y d o n h is o b la n a d i. V e k to r p o t e n s ia l u c h u n ( 1 9 .7 ) f o r m u l a n i c h iz iq li to k l a r u c h u n k o 'c h ir a y lik : ( 2 0 . 1 ) F izik h iso b la rn in g natijasi k o o rd in a ta siste m asig a b o g ‘liq em as, le k in k o o r d in a ta s is te rn a s in in g y e c h ila y o tg a n m a sa la g a m o s la b tan lan ish i m a sa la y e c h im in i yengillashtiradi. K o ‘rilay o tg an m a sa la d a k o o r d in a ta b o s h i to k li k o n tu r ic h id a boM sin, k o n tu r e le m e n tin in g k o o rd in a ta s i ? ' v a m a y d o n iz la n a y o tg a n n u q ta k o o rd in a ta s i f o ra s id a q u y id a g i te n g siz lik b a ja rilis h in i ta la b qilaylik: r » r' S h u n d a q u y id a g i m u n o s a b a tla r o ‘rin li boM adi: |r — r '[ « Vr2 - 2 / r ' « r ^ l , 1 1 Г. r r '} \ r - r I r { r 2 B u n i (2 0 .1 ) g a q o 'y sa k : B u y e rd a g i y o p iq k o n t u r b o ‘y ic h a b ir in c h i in te g ra l n o lg a te n g . I k k in c h i in te g r a ln i h is o b la s h d a y e n g illik boM ishi u c h u n k o o r d i n a t a o ‘q la r in i q u y id a g ic h a jo y la s h tir a y lik : to k li k o n tu r z = 0 te k is lik d a y o ts in , d e m a k : ? ' = l x ' + j y \ d r ' = Jdx'+ Jd y ' Ik k in c h i- d a n x y o ‘q la r in i z o ‘q i a tr o f id a s h u n d a y b u ra y lik k i, r v e k to r x = 0 te k is lik d a jo y la s h s in , x = 0 boM sin. U n d a : Л{ г ) = 1 ^ § ( у у ' ) ( 1 & ' + J d y ') = dx + ] j y ' d y ’^ . (2 0 .5 ) B u y erd ag i ik k in c h i in te g ra l y ' 2 / 2 b oshlang M ch fu n k siy a g a e g a va y o p iq k o n tu r b o 'y la b in te g ra l n o lg a ten g . j> y 'd x ' in te g ra l y o p iq k o n tu r b ila n c h e g a ra la n g a n s irtg a /■ bogMiq. Y o p iq k o n tu rd a g i to k va in teg ra llash y o ‘n alish i 20.1 - ra s m d a ta s v irla n g a n d e k s o a t stre lk a si b o 'y la b boMsa: r — to k li k o n t u r m a g n i t m o m e n t in i b e r a d i. T o k n i n g b u n d a y ( 2 0 . 2 ) (20.3) (20.4) y o ‘n alishida m ag n it m o m e n t z o ‘qiga teskari y o ‘n a lg a n lig in i h iso b g a o lib , ipmy ifo d a n i p m x r s h a k ld a y o z ib o lis h im iz m u m k in . X u llas: B u n a tija m a g n it m o m e n t o ‘q in i o ‘r a b — i— tu r u v c h i k o n s e n tr ik a y la n a la r s h a k lid a g i m a y d o n n i ta sv irla y d i. r v e k to r to k li к о п - ▼Лн t u r — m a g n it d ip o ld a n m a y d o n iz la n a y o t- 2o. l-rasm g a n n u q ta g a y o ‘n a lg a n v ek to r. A g a r to k b o s h q a y o ‘n a lis h d a o q s a , = -.S', b u o ‘z g a ris h b ila n b irg a Pm v e k to rn in g h a m y o ‘n a lis h i te sk a rig a o 'z g a r a d i va n a tija v iy ( 2 0 . 6 ) fo r m u la o 'z g a r m a y d i. M a g n it m o m e n t d o im iy vektorU gini h iso b g a o lg an h o ld a n a tija - d a n u y u rm a h is o b la b , m a g n it in d u k s iy a n i to p a m iz : B u y e rd a (te k s h irib k o 'rin g ): v [ r / г ъj = 0 U y u rm a h is o b la s h n i o x irig a etkazsak: B a ja rilg a n h is o b la rd a to k li h a lq a sh a k li h a q id a b ir o n s h a r t is h la tilm a d i, s h u n in g u c h u n te k is lik d a g i h a lq a n in g sh akli ix tiy o riy b o ‘lish i m u m k in . U z o q m a s o fa la rd a g i m a y d o n d a e le k tr to k n in g ay lan a , yoki b o sh q a shak l b o ‘y ic h a o ‘qishi sezilm ay d i. F a q a t to k n in g m a g n it m o m e n ti pm = I S a h a m iy a tli. M a y d o n m o d u lin i hisoblaylik. Pmr = pmrcos6 ekanligini h iso b g a o la m iz , v a В = 4 Ш m u n o s a b a tg a k o ‘ra: /■ (20.7) B u n d a n k o ‘rin a d ik i, m a g n it in d u k siy a m a s o fa n in g k u b ig a te s k a ri m u ta n o s ib e k a n . M a s o fa d o im iy b o ‘lg a n d a , to k li k o n t u r o ‘q id a (y a ’ni в = 0 b o ‘lg a n id a , m a g n it m o m e n t y o ‘n a lis h id a ), m a y d o n e n g k a tta : В = 2цноР,„ / г 3, m a g n it m o m e n tg a tik y o 'n a li s h d a ( в = п / 7 ) m a y d o n in d u k siy a si en g k ic h ik e k a n : Я = / r 3 2 0 . 2 - r a s m d a m a g n it d ip o l m a y d o n i grafik ta rz d a tasv irla n g a n . U m u m a n m a g n it d ip o ln in g u z o q m a s o fa la rd a g i m a y d o n i 5 -§ d a o ‘rg a n ilg a n e le k tr d ip o l m a y d o n ig a o ‘x sh a b k e ta d i. U la r o ra s id a g i farq fa q a t y a q in m a s o fa la rd a sez ila d i. T o k la r n in g ix tiy o riy m a s o fa la rd a g i m a g n it m a y d o n s o n li u s u lla r b ila n , m a s a la n E X E L d a s tu rid a h is o b la n is h i m u m k in . M u a llif tu z g a n b u n d a y d a s tu rn i b u y e rd a k e ltiris h n in g iloji y o ‘q. Savol va masalalar 20.1. M agnit dipolning vektor potensiali A (r ) m asofaga q anday bog'liq? 20.2. M agnit dipolning m agnit induksiyasi B (r ) m asofaga qanday bogliq? 20.3. M agnit dipolning m agnit induksiyasi B{?) yo‘nalishga qanday bog‘liq? 20.4. M agnit dipolning m agnit induksiyasi В ning dipol o ‘qidagi va dipol ekvatoridagi yo‘nalishi qanday? Muhim formulalar . F P o 2 / , / 2 • A m per qonuni: у = — — - — • M agnit induksiya va kuchlanganlik orasidagi bogManish: В = /.t/j0 H . S tatsionar m agnit m aydon tenglam alari: div В = О, <$2Ш = 0, s rotH = У, ф H d l = I. Tokli kesm a m agnit m aydoni: H = (s' n a \ + s' n a 2 )• IR 2 Aylanm a tok o'qidagi m agnit m aydon: H = i [ r 2 + a 2)3/2 > T oroid ichidagi m agnit m aydon: H = n i . > Tokli silindr ichidagi m agnit m aydon: H = I r / 2 n R 2 > Hajm dagi va chiziqli toklarning m agnit m aydoni: 4 n j . | r - r f 4л- f. | f - r f » M agnit m aydon uchun chegaraviy shartlar: B\n = Bln’ Ulr = Hjr + V m \ Pm . 4 p mr ) r r 3 r M agnit dipol m aydoni: B = — — { — '■% - + 4n 1 - 3 Skalyar shaklda: в = **^Рт ^ + 3 cos 2 g r 2 MAGNIT MAYDONNING ZARYADLARGA TA’SIRI 21-§. Lorens kuchi. Zaryadli zarraning magnit maydondagi harakati E le k tr m a y d o n z a ry a d la r to m o n id a n h o sil q ilin a d i va z a r y a d larg a t a ’sir e ta d i ( f = q E ) - M a g n it m a y d o n h a ra k a td a g i z a ry a d la r to m o n id a n h o s il q ilin a d i va h a ra k a td a g i z a ry a d la rg a t a ’s ir e ta d i. T e z lik - v e k to r m iq d o r, m a g n it m a y d o n in d u k siy a si h a m v e k to r m iq d o r, u la r d a n k u c h v e k to rin i h o sil q ilish u c h u n , u la rn i fa q a t v e k to r ra v is h d a k o 'p a y tir is h m u m k in . S h u n d a y q ilib , m a g n it m a y d o n d a h a r a k a tla n a y o tg a n z a ry a d li z a rra g a t a ’s ir e tu v c h i k u c h q u y id a g ic h a ifo d ala n ad i: F = q ( 9 * B ) . (21.1) B u n d a y ifo d a X .A .L o ren s to m o n id a n e k sp e rim e n ta l m a ’lu m o t- la rn i u m u m la s h tir is h n a tija s id a o lin g a n b o 'lib , L o re n s k u c h i d eb a ta la d i. M a g n it k u c h la m in g b u n d a y k o 'r in is h d a b o 'lis h i n isb iy lik n a z a riy a s id a n a z a riy ta s d iq la n a d i. V e k to r k o 'p a y tiris h x o ssa la rig a k o 'r a , L o re n s k u c h i m a g n it m a y d o n g a h a m , z a r r a n in g te z lig ig a h a m tik y o 'n a la d i. L o re n s k u c h i z a ry a d li z a r r a n i o g 'd i r i b , te z lik y o 'n a li s h i n i o 'z g a r ti r i b , te z lik m o d u lig a t a ’s ir e tm a y d i ( 2 1 . 1 - ra sm ). Ish n in g t a ’rifiga k o 'ra : A = E di = F 9 d t = 0 , m a g n it m a y d o n n in g b a ja r g a n ish i n o lg a te n g . L o re n s k u c h i z a r r a n in g tezlig i m o d u li, z a rra im p u lsi v a k in e tik e n e rg iy a s in i o ‘z g a rtirm a y d i, fa q a t u n in g h a ra k a t y o ‘n a lis h in i o ‘z g a rtira d i. N a tija d a m a g n it m a y d o n d a g i za ry ad li z a rra s p ir a ls im o n tra y e k to riy a b o ‘y lab h a r a k a tla n a d i ( 2 1 . 2 - r a s m ) . Z a ry a d li z a r r a la m in g m a g n it m a y d o n d a ogM shi e l e m e n ta r z a r r a la r fiz ik a sid a qoM lan ilad i. Z a r r a la m in g ra s m in i o lish u c h u n q o M la n ila d ig a n fo to e m u ls iy a m a g n it m a y d o n g a j o y la s h tir ila d i. E le m e n ta r z a r r a la m in g k a tta q ism i z a ry a d li boM ib, k a tta te z lik b ila n h a r a k a tla n g a n d a u la rn in g m a g n it m a y d o n d a ogM shi z a rra te z lig i, q /m n is b a t v a z a ry a d is h o ra s ig a bogM iq boM adi. Z a r r a n i n g f o to e m u ls iy a d a g i tra y e k to r iy a la r ig a k o 'r a e l e m e n ta r z a r r a la r n i fa rq la sh m u m k in ( 2 1 ,3 -ra sm ). Z a ry a d siz z a rra la r m a g n it m a y d o n d a o g 'm a y d i, u la rn in g izlari h a m f o to e m u ls iy a d a d e y a rli s e z ilm a y d i. E le m e n ta r z a r r a la r tra y e k to riy a la rin i p u fa k c h a li k a m e r a v a V ilso n k a m e r a s id a h a m k u z a tila d i. V ils o n k a m e r a s id a k a tta e n e rg iy a li z a rra la r o ‘z tra y e k to riy a s i b o ‘y - la b m o d d a n i io n la s h tir a d i va io n la r o ‘ta t o ‘y i n g a n b u g ‘n i k o n d e n s a t s i y a l a n i s h m a r k a z l a r i g a a y l a n a d i , s h u n d a y q ilib z a rra n in g izi k o ‘rin a d i. P u fa k c h a li k a m e - r a d a s u y u q l i k n in g o ‘ta q iz ig a n h o l a t i v u ju d g a k e ltirila d i. K a tta e n e rg iy a li z a ry a d li z a rra tra y e k to riy a s i b o 'y la b m o d d a n i io n la s h tir a d i, b u io n la r b u g 1 p u fa k c h a la r i h o sil boM ish m a rk a z la rig a a y la n ib , z a r r a n in g izi k o ‘rin a d i. P u fa k c h a li k a m e r a h a m , V ils o n k a m e ra s i h a m y o ritilib , u la rd a g i iz la r ra s m g a o lin a d i. Bu k a m e r a la r m a g n it m a y d o n g a jo y la s h tirilib , r a s m la r d a n o lin a d ig a n m a M u m o tla r k e sk in o s h irila d i. L o re n s k u c h in in g y o ‘n a lis h i m u s b a t v a m a n fiy z a rra la r u c h u n tu rlic h a . S h u n g a a so sla n ib m a g n ito g id ro d in a m ik ( M G D ) g e n e ra to r k a s h f e tilg a n . B u g e n e r a to r h a ra k a tla n u v c h i m e x a n iz m la ri y o 'q lig i b ila n a jra lib tu ra d i (2 1 .4 -ra s m ) . U n d a m ax su s yonilgM k a m e r a d a y o q ilib , h o sil q ilin g a n k a tta t e m p e r a tu r a li, io n la s h g a n g a z k a r n e - ra d a n k a tta tezlik b ilan otilib c h iq a d i. O q im g a tik m a g n it m a y d o n d a n o ‘ta y o tg a n z a r r a la r L o re n s k u c h i t a ’s irid a z a ry a d is h o ra s ig a q a ra b ikki y o n g a b u rila d i va o ‘rn a tilg a n e le k tr o d la rd a n b irin i m u s b a t, ik k in c h isin i m a n fiy z a ry a d la y d i (2 1 .4 - ra s m ). E le k tr e n e rg iy a e le k tr o d la r d a n tash q i za n jirg a b erilad i. M G D g e n e r a - to r l a r n in g ijo b iy t o m o n i s h u n d a k i , u la rn in g oM cham lari b o s h q a g e n e ra to r- la r d a n k o ‘p m a r ta k ic h ik , u la rn i j u d a te z ish g a tu s h iris h m u m k in . M G D g e n e ra to r la r n in g n is b a ta n k a tta q u w a tl i n a m u n a la r i y a r a tilib , q o M lan ilg an ig a q a r a m a y , u la rn i k en g ta rq a lis h i h a q id a g a p iris h e rta . Z a r y a d n in g m a g n it m a y d o n d a g i h a r a k a tin i o ‘rg a n is h u c h u n u n in g te z lig in i m a g n it m a y d o n in d u k s iy a sig a n is b a ta n p a ra lle l va p e rp e n d e k u ly a r tash k il etu v ch ilarg a a jra tib o ‘rganaylik: 9 = 5ц + 3± . L o re n s k u c h in in g ifo d a sig a % ni q o ‘yib k o ‘rsak, k u c h n o lg a te n g - ligini to p a m iz , d e m a k m a g n it m a y d o n d a z a ry a d li z a rra d o im iy ^ te z lik b ila n m a g n it k u c h c h iz iq la ri b o ‘y lab ilg a rila n m a h a r a k a tin i d av o m e ttira d i. 9± tezlik L o re n s k u c h ig a hissa q o 's h ib , s o n jih a td a n g a ten g , y o ‘n a lish i m a g n it in d u k siy a v a tezlik vek to rlarig a tik k u c h n i, y a ’ni m a rk a z g a in tilm a k u c h n i h osil q iladi: m9{ R = q9± B. R ( 2 1 . 2 ) Download 48 Kb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling