Synthesis, characterization and biological activity of Schiff bases based on chitosan and arylpyrazole moiety
Download 1.04 Mb. Pdf ko'rish
|
MAQOLA.7
Conclusions
Chitosan was chemically modified with biologically active pyrazole moiety. Specifically, Chitosan Schiff bases were synthesized by the condensation of 3-(4-substituted-phenyl)-1-phenyl-1H- pyrazole-4-carbaldehyde with chitosan. These chitosan derivatives were characterized by elemental analyses, FT-IR, XRD and TG analysis. It has been found that the type of substituent significantly affect the degree of substitution of the amino group of chitosan. The formation of Schiff base groups led to reduction of the crystallinity compared with chitosan. This can be attributed to the spatial hindrance and hydrophobic forces in the arylpyrazole groups. The stability of the prepared compounds was studied and the activation energy of degradation was calculated using Coats– Redfern model. The thermal stability reduced by introducing Schiff base groups compared with Page 16 of 31 Accepted Manuscript 12 chitosan. The activation energy of the decomposition was found to be dependent on the type of substituent. The antimicrobial activitiy of chitosan and the Schiff bases of chitosan were investigated against Streptococcus pneumonia, Bacillis subtilis and Escherichia coli bacterial species as well as Aspergillus fumigatus, Geotricum candidum and Syncephalastrum recemosum fungal species. The results indicated that the Schiff bases of chitosan had better antimicrobial activities than chitosan. The chitosan Schiff base with un-substituted arylpyrazole moiety was found to be more active against all examined microorganisms. References [1] M. Yazdani-Pedram, A. Lagos, J. Retuert, R. Guerrero, P. Riquelme, J. Macromol. Sci. Part A: Pure Appl. Chem. 32 (1995) 1037-1047. ] 2 [ M. Yazdani ‐Pedram, J. Retuert, J. Appl. Polym. Sci. 63 (1997) 1321-1326. ] 3 [ M. Sugimoto, M. Morimoto, H. Sashiwa, H. Saimoto, Y. Shigemasa, Carbohyd. Polym. 36 (1998) 49-59. ] 4 [ P.A. Felse, T. Panda, Bioprocess Eng. 20 (1999) 505-512. ] 5 [ C.-M. Lehr, J.A. Bouwstra, E.H. Schacht, H.E. Junginger, Int. J. Pharm. 78 (1992) 43-48. ] 6 [ N. Alves, J. Mano, Int. J. Biol. Macromol. 43 (2008) 401-414. ] 7 [ W. Tiyaboonchai, Naresuan University Journal 11 (2013) 51-66. ] 8 [ E. Mirzaei B, A. Ramazani SA, M. Shafiee, M. Danaei, Int. J. Polymer. Mater. Polymer. Biomater. 62 (2013) 605-611. ] 9 [ S.J. Kim, S.J. Park, S.I. Kim, React. Funct. Polym. 55 (2003) 53-59. ] 10 [ J. Zhang, Z. Zhang, Y. Song, H. Cai, React. Funct. Polym. 66 (2006) 916-923. ] 11 [ E.I. Rabea, M.E.-T. Badawy, C.V. Stevens, G. Smagghe, W. Steurbaut, Biomacromolecules 4 (2003) 1457-1465. ] 12 [ K. El-Tahlawy, M.A. Gaffar, S. El-Rafie, Carbohyd. Polym. 63 (2006) 385-392. ] 13 [ J. Wang, H. Wang, Int. J. Biol. Macromol. 48 (2011) 523-529. ] 14 [ T. Baran, A. Menteş, H. Arslan, Int. j. Biol. Macromol. 72 (2015) 94-103. ] 15 [ R. Muzzarelli, V. Baldassarre, F. Conti, P. Ferrara, G .Biagini, G. Gazzanelli, V. Vasi, Biomaterials 9 (1988) 247-252. ] 16 [ R. Antony, S.T. David, K. Saravanan, K. Karuppasamy, S. Balakumar, Spectrochim Acta A. 103 (2013) 423-430 ] 17 [ M.W. Sabaa, R.R. Mohamed, S. Eltaweel, R.S. Seoudi, J. Appl. Polym. Sci. 123 (2012) 3459- 3469. Page 17 of 31 Accepted Manuscript 13 ] 18 [ N.A. Mohamed, M.W. Sabaa, A.H. El-Ghandour, M.M. Abdel-Aziz, O.F. Abdel-Gawad, Int. J. Biol. Macromol. 60 (2013) 156-164. ] 19 [ R.R. Mohamed, R.S. Seoudi, M.W. Sabaa, Cellulose, 19 (2012) 947-958. [20] M. EI Badawy. Polym. Int. 57 (2008) 254–261. ] 21 [ X. Jin, J. Wang, J. Bai, Carbohydr. Res. 344 (2009) 825-829. ] 22 [ S. Hirano, K. Nagamura, M. Zhang, S.K. Kim, B.G. Chung, M. Yoshikawa, T. Midorikawa, Carbohyd. Polym. 38 (1999) 293-298. ] 23 [ K. Kurita, S. Mori, Y. Nishiyama, M. Harata, Polym. Bull. 48 (2002) 159-166. ] 24 [ G.K. Moore, G.A. Roberts, Int. J. Biol. Macromol. 3 (1981) 337-340. ] 25 [ H. Sashiwa, Y. Shigemasa, Carbohyd. Polym. 39 (1999) 127-138. ] 26 [ V. Mourya, N.N. Inamdar, React. Funct. Polym. 68 (2008) 1013-1051. ] 27 [ J. Xiao-xia, J. Wang, J. Bai, J Chem Eng Chinese Univ, 24 (2010) 645-650. [28] L. Canali, D.C. Sherrington, Chem. Soc. Rev. 28 (1999) 85–93. [29] X. Pang, X. Chen, H. Du, X. Wang, X. Jing, J. Organomet. Chem. 692 (2007)5605–5613. [30] N.M. Alves, J.F. Mano, Int. J. Biol. Macromol. 43 (2008) 401–414. [31] M. Monier, Int. J. Biol. Macromol. 50 (2012) 773–781. ] 32 [ R. Antony, S.T.D. Manickam, K. Saravanan, K. Karuppasamy, S. Balakumar, J. Mol. Struct., 1050 (2013) 53- 60. [33] R. Antony at all.,2013, Journal of Molecular Structure 1050 (2013) 53-60. [34] N.M. Alves, J.F. Mano, Int. J. Biol. Macromol. 43 (2008) 401–414. ] 35 [ D. Vyas, S. Tala, J. Akbari, M. Dhaduk, H. Joshi, Ind. J. Chem., Sect. B\ Organic including medicinal 48 (2009) 1405. ] 36 [ E.I. Klimova, M. Martı ́nez Garcı́a, T. Klimova Berestneva, C. Alvarez Toledano, R. Alfredo Toskano, L. Ruı́z Ramı́rez, J. Organomet. Chem. 585 (1999) 106-114. ] 37 [ N. S Shah, A. Biradar, S.I. Habib, J. Dhole, M. Baseer, P. Kulkarni, Der Pharma Chem. 3 (2011) 167-171. ] 38 [ M. Avadi, A. Sadeghi, A. Tahzibi, K. Bayati, M. Pouladzadeh, M. Zohuriaan-Mehr, M. Rafiee-Tehrani, Eur. Polym. J. 40 (2004) 1355-1361. ] 39 [ S.M. Rida, M.N. Saudi, A.M. Youssef, M.A. Halim, Lett. Org. Chem. 6 (2009) 282-288. ] 40 [ M. Kira, M. Abdel-Rahman, K. Gadalla, Tetrahedron Lett. 10 (1969) 109-110. ] 41 [ L. Hai-hong, Chem. Res. Appl. 2 (2007) 024. ] 42 [ A. Senso, P. Franco, L. Oliveros, C. Minguillón, Carbohydr. Res. 329 (2000) 367-376. Page 18 of 31 Accepted Manuscript 14 ] 43 [ A. C. Scott, Laboratory control of antimicrobial therapy, In: Mackie & McCartney Practical medical Microbiology, J. G. Collee, J. P. Duguid, A. G. Fraser, B. P. Marmion (Eds), United Kingdom-Edinburgh: Churchill Livingstone, 1989, pp. 161-181. ] 44 [ K.R. K Saini, S.A. Choudhary, Y.C. Joshi, P. Joshi, J. Chem. 2 (2005) 224-227. ] 45 [ M. Bhuiyan, M. Hossain, M. Mahmud, M. Al-Amin, Chem. J. 1 (2011) 21-28. ] 46 [ L.S. Guinesi, E.T.G. Cavalheiro, Carbohyd. Polym. 65 (2006) 557-561. ] 47 [ A.K. Sah, C.P. Rao, P.K. Saarenketo, E. Kolehmainen, K. Rissanen, Carbohydr. Res. 335 (2001) 33-43. ] 48 [ D.-H. Li, L.-M. Liu, K.-L. Tian, J.-C. Liu, X.-Q. Fan, Carbohyd. Polym. 67 (2007) 40-45. ] 49 [ Y. Zhang, C. Xue, Y. Xue, R. Gao, X. Zhang, Carbohydr. Res. 340 (2005) 1914-1917. ] 50 [ T.F. Jiao, J. Zhou, J. Zhou, L. Gao, Y. Xing, X. Li, Iran. Polym. J. 20 (2011) 123-136. ] 51 [ N. Lomadze, H.-J. Schneider, Tetrahedron, 61 (2005) 8694-8698. ] 52 [ M. Bengisu, E. Yilmaz, Carbohyd. Polym. 50 (2002) 165-175. ] 53 [ A. Pawlak, M. Mucha, Thermochim. Acta 396 (2003) 153-166. ] 54 [ T. Wanjun, W. Cunxin, C. Donghua, Polym. Degrad. Stab. 87 (2005) 389-394. ] 55 [ F. López, A. Mercê, F.J. Alguacil, A. López-Delgado, J. Therm. Anal. Calorim. 91 (2008) 633-639. ] 56 [ A. Coats, J. Redfern, Nature 201 (1964) 68-69. ] 57 [ Q. Feng, J. Wu, G. Chen, F. Cui, T. Kim, J. Kim, J. Biomed. Mater. Res. (2001) 662-668. ] 58 [ L. Hadwiger, D. Kendra, B. Fristensky, W. Wagoner, Chitosan both activates genes in plants and inhibits RNA synthesis in fungi, in: Chitin in nature and technology, Springer, 1986, pp. 209- 214. ] 59 [ R. Cuero, G. Osuji, A. Washington, Biotechnol. Lett, 13 (1991) 441-444. |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling