The Failures of Mathematical Anti-Evolutionism


Download 0.99 Mb.
Pdf ko'rish
bet54/108
Sana31.01.2023
Hajmi0.99 Mb.
#1142303
1   ...   50   51   52   53   54   55   56   57   ...   108
Bog'liq
The Failures of Mathematical Anti-Evolutionism (Jason Rosenhouse) (z-lib.org)

(Miller 2007, 1055)
In the language of our dog analogy, Behe’s argument is tantamount
to carrying out a single experiment on poodles and then drawing a
conclusion about what any dog can do in any scenario.
These are salient points, and they ought to make us skepti-
cal as to whether Behe’s calculation really amounts to anything.
However, the really fatal problem with the argument lies elsewhere.
The main problem is that the first bullet point above is not a sufficient
justification for reducing probability to combinatorics.
To see why, note that Behe’s argument requires that we be
able to identify “double CCCs” in organisms. We can take this to
mean that we must be certain that multiple, simultaneous mutations
are necessary for the evolution of that protein complex relative to
some ancestral state. This is essential to Behe’s argument since we
must be able to rule out any possibility of cumulative selection.
Making such a determination entails a thorough understanding of
the geometric structure of genotype space in the neighborhood of the
protein complex. We therefore find ourselves once more confronting a
familiar problem: how can we ever be confident that we know enough
about this structure to make such a strong statement?
In the context of chloroquine resistance in malarial parasites,
Behe bases his conclusion solely on certain empirical data. He notes
that two specific mutations are nearly always present in strongly
resistant parasites and concludes that both of these mutations are
necessary before the parasite can benefit from either one individually.
This claim has been strongly challenged by critics of Behe’s work,
who note that research has shown his conclusion to be false. Again,
Kenneth Miller makes the salient point:
Behe obtains his probabilities by considering each mutation as an
independent event, ruling out any role for cumulative selection,


5.10 the edge of evolution? 159
and requiring evolution to achieve an exact, predetermined result.
Not only are each of these conditions unrealistic, but they do not
apply even in the case of his chosen example. First, he overlooks
the existence of chloroquine-resistant strains of malaria lacking
one of the mutations he claims to be essential (at position 220).
This matters, because it shows that there are several mutational
routes to effective drug resistance. Second, and more importantly,
Behe waves away evidence suggesting that chloroquine resistance
may be the result of sequential, not simultaneous mutations,
boosted by the so-called ARMD (accelerated resistance to multiple
drugs) phenotype, which is itself drug induced.
(Miller 2007, 1055)
Furthermore, the 10
20
figure is highly dubious as an estimate of
the frequency of chloroquine resistance. Biologist Nicholas Matzke
writes:
Behe obtains the crucial 10
20
number from an offhand estimate in
the literature that considered only the few CQR [chloroquine
resistance] alleles that have been detected because they have
taken over regional populations. What is needed, however, is an
estimate of how often any weak-but-selectable CQR originates. A
study conducted in an area where CQR is actively evolving
showed that high-level CQR is more complex than just two
substitutions but that it is preceded by CQR alleles having fewer
substitutions; moreover, Behe’s two mutations do not always
co-occur. As a result, CQR is both more complex and vastly more
probable than Behe thinks.
(Matzke 2007, 566)
Our conclusion is that Behe cannot justify the statements
he needs regarding the geometric structure of genotype space. His
attempt to assign relevant numbers and carry out probability calcu-
lations have no importance since the assumptions underlying those
calculations have been shown to be false. In the end, Behe’s preten-
sions to mathematical precision amount to very little. His argument
is really just that evolution will not move a population from point A


160 5 probability theory
to point B if multiple, simultaneous mutations are required. No one
disagrees with this, but in practice there is no way of showing that
multiple, simultaneous mutations are actually required.
This brings us to the end of our discussion of anti-evolution
probability. We have considered several variations on the same basic
theme, but they all ultimately ran afoul of the problem we identified
back in Section 3.4. A mathematical argument against evolution
requires a detailed knowledge of both the probabilistic and geometric
structures of protein space (or possibly genotype space, depending on
the context). This knowledge is always lacking in practical situations.
When you see a probability calculation in some piece of anti-evolution
writing, you can be certain that it is based on biologically unrealistic
assumptions.
5.11 notes and further reading
My discussion of the Hardy–Weinberg law was slightly oversimplified, in
that I did not discuss what happens in certain extreme cases, such as
when all members of the starting population are of types AA and BB.
In such cases, it might require two generations for the three genotypes
to settle down to their Hardy–Weinberg frequencies. This detail had
no bearing on our discussion, and I felt it was more trouble than it was
worth to discuss it. For a more detailed treatment, as well as for a very
lucid (but technical) introduction to the field of population genetics, I
recommend the textbook by Gillespie (2004).
We noted that Dembski’s writing about complex, specified information
was meant as a general tool for detecting design in the causal history
of some event or object. For our purposes, it was only necessary to
discuss the proposed application of this tool to biology. However,
many other writers have been strongly critical of the whole
framework Dembski proposes. For trenchant criticisms in this vein, I
recommend the papers by Fitelson, Stephens, and Sober (1999),
Godfrey-Smith (2001), and Elsberry and Shallit (2011).
For a general discussion of the role of probability arguments in ID
discourse, have a look at the article by Sober (2002). I would also
recommend the two articles by Olofsson (2008, 2013).


5.11 notes and further reading 161
Anti-evolutionists sometimes direct the BAI toward the origin of life, as
opposed to the origin of novel proteins or genes. The article by Carrier
(2004) provides a thorough refutation of such arguments.
The concept of “specified complexity” introduced in Section 5.6 has
occasionally been floated by scientists. Its first appearance seems to
have been in a book by Leslie Orgel (1973):
It is possible to make a more fundamental distinction between
living and nonliving things by examining their molecular structure
and molecular behavior. In brief, living organisms are distinguished
by their specified complexity.

Download 0.99 Mb.

Do'stlaringiz bilan baham:
1   ...   50   51   52   53   54   55   56   57   ...   108




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling