The Failures of Mathematical Anti-Evolutionism


Download 0.99 Mb.
Pdf ko'rish
bet65/108
Sana31.01.2023
Hajmi0.99 Mb.
#1142303
1   ...   61   62   63   64   65   66   67   68   ...   108
Bog'liq
The Failures of Mathematical Anti-Evolutionism (Jason Rosenhouse) (z-lib.org)

(Meyer 2017, 116–117)
To clarify, we should note that functional proteins are not just linear
chains of amino acids. Their physical properties cause them to fold
into three-dimensional structures, and this structure plays a large role
in determining their biological function.
We can distinguish two threads in Meyer’s argument:
• A mathematical claim that Axe’s experiment permits a strong conclusion
to be drawn about the geometrical structure of protein space.
• A biochemical claim that useful proteins are tiny islands of functionality
adrift in a sea of uselessness.
Let us consider each of these claims, starting with the mathematical
point.
Even taking Axe’s results at face value, he plainly did not
show that “every functional gene or protein” is surrounded by a
vast ocean of nonfunctional sequences. Axe carried out mutagenesis
experiments on one part of one specific protein. Since there are some


6.6 protein space revisited 187
fifty thousand proteins in the human body alone, it is quite a stretch
to draw a general conclusion about protein space from a study of just
one part of one of them.
However, Axe’s results should not be taken at face value.
In an online discussion of Axe’s paper, biochemist Arthur Hunt
noted that Axe did not actually study the naturally occurring TEM-1
penicillinase. For reasons having to do with experimental necessity,
he studied a variant of this enzyme that was more sensitive to
mutation. In his online essay, Hunt illustrated his points using the
metaphor of a hill in which the size of the hill’s base corresponded
to the accessibility of functionality – the bigger the base the more
accessible the function. Hunt writes:
In terms of our illustrations, Axe’s TEM-1 variant is a tiny “hill”
with very steep sides … Obviously, from these considerations, we
can see that assertions that the tiny base of the “hill” … in any
way reflects that of a normal enzyme are not appropriate. On this
basis alone, we may conclude that the claims of ID proponents
vis-a-vis Axe 2004 are exaggerated and wrong. Axe’s numbers tell
us about the apparent isolation of the low-activity variant, but
reveal little … about the “isolation” or evolution of TEM-1
penicillinase. (Or any other enzyme, for that matter.)
(Hunt 2007)
Hunt goes on to note that other experimental approaches have pro-
duced much higher estimates on the frequency of functional proteins.
A further point is that Axe’s estimate was based on the specific
mutations he generated. These mutations were hardly a complete
census of all the ways in which his enzyme might have been mutated.
Ironically, this is one place where the sheer size of protein space is
relevant, albeit not in a way ID proponents might like. No mutagene-
sis experiment could ever hope to sample more than a tiny, highly
localized, portion of protein space. Axe, himself an ID proponent,
essentially acknowledges this point right at the start of his paper:


188 6 information and combinatorial search
Although the immense size of sequence space greatly limits the
utility of direct experimental exploration, the sparse sampling
that is feasible ought to be of use in addressing the most basic
question of the overall prevalence of function.
(Axe 2004, 1295)
It is one thing to say that such work ought to be of use, but it is quite
another to suggest it is sufficiently informative to draw sweeping
conclusions regarding the soundness of evolution.
In Section 3.4, I remarked that the anti-evolutionist’s search
metaphor inevitably fails because we can never hope to understand
the probabilistic and geometric structures of the space with sufficient
detail to declare that they are inaccessible to evolutionary mecha-
nisms. The considerations of the last few paragraphs help to flesh out
why I say that.
To dramatize the point, let us return to our analogy of finding a
pizza parlor in the downtown area of a major American city. Meyer’s
argument, based on Axe’s work, is tantamount to looking at the
storefront immediately in front of you, noting that it is not a pizza
parlor, and then deciding there is no pizza to be had anywhere in the
city. It would not be reasonable to base such a sweeping conclusion
on the results of such a minimal search.
We now turn to the biochemical question raised by Meyer’s
argument. Our discussion to this point has emphasized why
Axe’s experiments do not support the grand conclusions ID
proponents wish to draw. But can we also point to evidence that the
geometrical structure of protein space is actually amenable to
evolutionary exploration?
Indeed we can. Decades of research into protein evolution has
made it clear that the space is not at all structured as tiny islands of
functionality adrift in an ocean of useless sequences. Protein function
is nowhere near as sensitive to change as ID proponents assert.
Molecular biologists typically organize proteins into large
groupings called families, which are understood to represent proteins
that evolved from a common ancestor. More than sixty thousand such


6.6 protein space revisited 189
families have been identified. Within a family, proteins can differ at
large percentages of their amino acid sequences while maintaining
the same fold. Biochemists Evandro Ferrada and Andreas Wagner
write:
[E]ven very distant sequences can have the same fold. If two such
sequences have the same common ancestor, they are referred to as
members of the same protein family. Such unambiguous common
ancestry can usually be identified for sequences that differ in up to
60 to 70 percent of their amino acids. Two sequences in the same
family can be connected through a series of amino acid changes
that traverse a fraction of sequence space while leaving the
structure unchanged. When common ancestry can be claimed
based on criteria such as common aspects of structure or function,
families of proteins are grouped into superfamilies. Superfamilies
share a common fold and diverge on average around 70 to 80
percent in sequence space. Sets of superfamilies that share the
same three-dimensional arrangement of secondary structure are
grouped into the same fold. Amino acid sequences with the same
fold can be very different. Based on a systematic comparison of
many divergent sequences with shared folds … such sequences
can have more than 95 percent divergence.

Download 0.99 Mb.

Do'stlaringiz bilan baham:
1   ...   61   62   63   64   65   66   67   68   ...   108




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling