Tionswert angenommen wird


Download 211.04 Kb.
Pdf ko'rish
bet7/8
Sana05.01.2022
Hajmi211.04 Kb.
#205397
1   2   3   4   5   6   7   8
Bog'liq
abbildungseigenschaften

4.5.3  Bijektivität 

 

Bijektivität (bijektiv oder umkehrbar eindeutig auf oder eineindeutig auf) ist 



eine Eigenschaft einer mathematischen Funktion. 

Eine Funktion ist bijektiv, wenn sie verschiedene Elemente ihres Definiti‐

onsbereichs auf verschiedene Elemente der Zielmenge abbildet (sie also 

injektiv ist), und wenn zusätzlich jedes Element der Zielmenge als Funkti‐

onswert auftritt (sie also surjektiv ist). Eine bijektive Funktion hat daher 

immer eine Umkehrfunktion, ist also invertierbar. 

Eine bijektive Funktion nennt man auch eine Bijektion. Eine Bijektion einer 

endlichen Menge auf sich selbst heißt auch Permutation. 

Für endliche Mengen haben die Definitionsmenge, die Bildmenge und die 

Zielmenge einer Bijektion dieselbe Anzahl von Elementen. Umgekehrt ist eine Funktion zwischen 

endlichen Mengen bijektiv, wenn diese drei Zahlen übereinstimmen. 

Für unendliche Mengen definiert man die Mächtigkeit als Verallgemeinerung der Elementanzahl mit 

Hilfe des Begriffes der Bijektion

 




Download 211.04 Kb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling